
1

Is
Code Optimization
Research Relevant?

Bill Pugh

Univ. of Maryland

Motivation

• A Polemic by Rob Pike

• Proebsting's Law

• Some of my own musings

Systems Software Research
is Irrelevant

• A Polemic by Rob Pike

• An interesting read

• I’m not going to try to repeat it
– get it yourself and read

Proebsting’s Law

• Moore’s law
– chip density doubles every 18 months

– often reflected in CPU power doubling every
18 months

• Proebsting’s Law
– compiler technology doubles CPU power every

18 years

Todd’s justification

• Difference between optimizing and non-
optimizing compiler about 4x.

• Assume compiler technology represents 36
years of progress
– compiler technology doubles CPU power every

18 years

– less than 4% a year

Let’s check Todd’s numbers

• Benefits from compiler optimization

• Very few cases with more than a factor of 2
difference

• 1.2 to 1.5 not uncommon
– gcc ratio tends to be low

• because unoptimized version is still pretty good

• Some exceptions
– Matrix matrix multiplication

2

Jalepeño comparison

• Jalepeño has two compilers
– quick compiler

• designed to generate code as quickly as possible

– optimizing compiler
• aggressive optimizing compiler

• Use result from another paper
– compare cost to compile and execute using

quick compiler

– vs. execution time only using opt. compiler

Results (from Arnold et al., 2000)
cost of quick code

generation
and execution,

compared to
cost of execution

of optimized code

Benefits from optimization

• 4x is a reasonable estimate, perhaps
generous

• 36 years is arbitrary, designed to get the
magic 18 years

• where will we be 18 years from now?

18 years from now

• If we pull a Pentium III out of the deep
freeze, apply our future compiler
technology to SPECINT2000, and get an
additional 2x speed improvement
– I will be impressed/amazed

Irrelevant is OK

• Some of my best friends work on structural
complexity theory

• But if we want to be more relevant,
– what, if anything, should we be doing

differently?

Code optimization is relevant

• Nobody is going to turn off their
optimization and discard a factor of 2x
– unless they don’t trust their optimizer

• But we already have code optimization
– How much better can we make it?

– A lot of us teach compilers from a 15 year old
textbook

– What can further research contribute?

3

Importance of Performance

• In many situations,
– time to market

– reliability

– safety

• are much more important than 5-15%
performance gains

Code optimization can help

• Human reality is, people tweak their code
for performance
– get that extra 5-15%

– result is often hard to understand and maintain

– “manual optimization” may even introduce
errors

• Or use C or C++ rather than Java

Optimization of high level code

• Remove performance penalty for
– using higher level constructs

– safety checks (e.g., array bounds checks)

– writing clean, simple code
• no benefit to applying loop unrolling by hand

– Encourage ADT’s that are as efficient as
primitive types

• Benefit: cleaner, higher level code gets
written

How would we know?

• Many benchmark programs
– have been hand-tuned to near death

– use such bad programming I wouldn’t allow
undergraduates to see them

– have been converted from Fortran
• or written by people with a Fortran mindset

An example

• In work with a student, generated C++ code
to perform sparse matrix computations
– assumed the C++ compiler would optimize it

well

– Dec C++ compiler passed

– GCC and Sun compiler failed horribly
• factor of 3x slowdown

– nothing fancy; gcc was just brain dead

We need high level benchmarks

• Benchmarks should be code that is
– easy to understand

– easy to reuse, composed from libraries

– as close as possible to how you would describe
the algorithm

• Languages should have performance
requirements
– e.g., tail recursion is efficient

4

An Example

• In Java, synchronization on thread local
objects is “useless”

• Allows classes to be designed to be thread
safe
– without regard to their use

• Lots of recent papers on removing “useless”
synchronization
– how much can it help

Cost of Synchronization

• Few good public multithreaded benchmarks

• Volano Benchmark
– Most widely used server benchmark

– Multithreaded chat room server

– Client performs 4.8M synchronizations
• 8K useful (0.2%)

– Server 43M synchronizations
• 1.7M useful (4%)

Synchronization in VolanoMark
Client

90.3%

5.6%

1.8%

0.9%

0.9%

0.4%

0.2%

java.io.BufferedInputStream

java.io.BufferedOutputStream
java.util.Observable
java.util.Vector

java.io.FilterInputStream
everything else

All shared monitors

7,684 synchronizations on shared monitors
4,828,130 thread local synchronizations

Cost of Synchronization
in VolanoMark

• Removed synchronization of
– java.io.BufferedInputStream

– java.io.BufferedOutputStream

• Performance (2 processor Ultra 60)
– HotSpot (1.3 beta)

• Original: 4788

• Altered: 4923 (+3%)

– Exact VM (1.2.2)
• Original: 6649

• Altered: 6874 (+3%)

Some observations

• Not a big win (3%)

• Which JVM used more of an issue
– Exact JVM does a better job of interfacing with

Solaris networking libraries

• Library design is important
– BufferedInputStream should never have been

designed as a synchronized class

Cost of Synchronization in
SpecJVM DB Benchmark

• Program in the Spec JVM benchmark

• Does lots of synchronization
– > 53,000,000 syncs

• 99.9% comes from use of Vector

– Benchmark is single threaded, all of it
is useless

• Tried
– Remove synchronizations

– Switching to ArrayList

– Improving the algorithm

5

Execution Time of Spec JVM
_209_db, Hotspot Server

0
5

10
15
20
25
30
35
40

Original 35.5 32.6 28.5 16.2 12.8

Without Syncs 30.3 32.5 28.5 14.0 12.8

Original
Use

ArrayList

Use
ArrayList
and other

minor

Change
Shell Sort
to Merge

Sort

All

Lessons

• Synchronization cost can be substantial
– 10-20% for DB benchmark

– recoding or better compiler opts would help

• But the real problem was the algorithm
– Cost of stupidity higher than cost

of synchronization

– Used built-in merge sort rather than
hand-coded shell sort

Small Research Idea

• Develop a tools that analyzes a program
– Searches for quadratic sorting algorithms

• Don’t try to automatically update algorithm,
or guarantee 100% accuracy

• Lots of stories about programs that
contained a quadratic sort
– not noticed until it was run on large inputs

Need Performance Tools

• gprof is pretty bad

• quantify and similar tools are better
– still hard to isolate performance problems

– particularly in libraries

Java Performance

• Non-graphical Java applications are pretty
fast

• Swing performance is poor to fair
– compiler optimizations aren’t going to help

– What needs to be changed?
• Do we need to junk Swing and use a different API,

or redesign the implementation

– How can tools help?

The cost of errors

• The cost incurred by buffer overruns
– crashes and attacks

• is far greater than the cost of even naïve
bounds checks

• Others
– general crashes, freezes, blue screen of death

– viruses

6

OK, what should we do?

• A lot of steps have already been taken:
– Java is type-safe, has GC, does bounds checks,

never forgets to release a lock

• But the lesson hasn’t taken hold
– C# allows unsafe code that does raw pointer

smashing
• so does Java through JNI

– a transition mechanism only (I hope)

More to do

• Add whatever static checking we can
– use generic polymorphism, rather than Java’s

generic containers

Data structure invariants

• Most useful kinds of invariants

• For example
– this is a doubly linked list

– n is the length of the list reachable from p

• Naïve checking is expensive
– can we do efficiently?

– good research problem

Data race detection

• Finding errors and performance bottlenecks
in multithreaded programs is going to be a
big issue

• Tools exist for dynamic data race detection
– papers say 10-30x slowdown

– commercial tools have a 100-9000x slowdown

– lots of room for improvement

As if People Programmed

• A lot of this comes back to:

• Doing compiler research, as though
programs were written by people
– who are still around and care about getting their

program written correctly and quickly

– and who also care about the performance
• are willing to fix/improve algorithms

– would happily interact with compiler/tools
• if it was useful

If you want to get it published

• Compile dusty benchmarks
– run them on their one data set

• All programs are “correct”
– any deviations from official output is

unacceptable

– DB benchmark uses unstable shell sort
• can’t replace it with stable merge sort

• No human involvement is allowed

7

Understandable

• Easy to measure the improvement a paper
provides
– what is the improvement in the SPECINT

numbers?

• Much harder to objectively measure the
things that matter

 Consider

• A paper allows higher level constructs to be
compiled efficiently
– since they couldn’t be compiled efficiently

before, no benchmarks use them

– author provides his own benchmarks, show
substantial improvement on benchmarks he
wrote

– one man’s high level construct is another’s
contrived example

Human experiments L

• To determine if some tool can help people
find performance bottlenecks more
effectively
– need to do human experiments

– probably with students
• what do these results say about professional

programmers?

– Very, very hard
• Done in Software Eng.

Some things to think about

• Most of the SPECINT benchmarks are done
– no new research is going to get enough

additional performance out of SPECINT

– to warrant folding it into an industrial strength
compiler

– unless you come up with something very
simple to implement

Encourage use of
high-level constructs

• Reduce performance penalty for good
coding style

• Eliminate motivation and reward for low
level programming

• Example problems:
– remove implicit down casts performed by GJ

– compile a MATLAB-like language

New ways to evaluate papers

• We need well-written benchmarks

• We need new ways to evaluate papers
– that take programmers into account

8

The big question

• What are we doing that is going to change
– the way people use/experience computers,

– or the way people write software

• five, ten or twenty years down the road?

• Software is hard…
– improving the way software is written is harder

