Building Product Populations with Software Components

Rob van Ommering
Philips Research Laboratories
Prof. Holstlaan 4
5656 AA Eindhoven, The Netherlands
tel. +31 40 27 42905

Rob.van.Ommering @ philips.com

ABSTRACT

Two trends have made reuse of embedded software for consumer
electronics an urgent issue: the software of individual products
becomes more and more complex, and the market demands a
larger variety of products at an increasing rate. For that reason,
various business groups within Philips organize their products as
product families. A third trend is the integration of functions that
until now were only found in separate products (e.g. a TV with
Dolby Digital sound and a built-in DVD player). This requires
software reuse between product families, which - when organized
systematically - leads to a product population approach.

We have set up such a product population approach, and applied
it in various business groups within our organization. We use a
component technology that stimulates context independence, and
allows the composition of new products out of existing parts. We
use an architectural description language to explicitly describe the
architecture, and also to generate efficient bindings. We have
aligned our development process and organization with the new
‘compositional” way of working. This paper outlines our approach
and reports on our experiences with it.

Keywords

Product Family, Product Population, Diversity, Component Based
Development, Architectural Description Language, Configuration
Management.

1. INTRODUCTION

The last decade has seen a growing interest in software
architecture to build complex, high-quality systems. Also, various
component technologies have emerged, significantly improving
software reuse. These two phenomena are combined in software
product lines [11][8], allowing companies to efficiently create a
variety of complicated products with a short lead-time. This paper
reflects our experiences in setting up a component based software
product line in the field of embedded software for consumer
electronics (CE).

By 1996, Philips already had quite some experience in developing
a large range of televisions in all regions of the world. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICSE’02, May 19-25, 2002, Orlando, Florida, USA.

Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

255

hardware was reasonably modular, but the software relied mainly
on ‘ancient’ principles to handle diversity: compiler switches,
run-time options, and - if the differences became too large - ‘copy
and edit’. It was clear to us that this way of working could not be
continued.

Figure 1. Example consumer products

Moreover, new products loomed on the horizon, containing new
and increasingly complex combinations of existing functionality
(see Figure 1) such as TVs with built-in VCR or DVD players or
recorders, with enhanced sound, and implementing digital TV
standards (formerly the task of a separate ‘set-top box’). This
required integration of pieces of software developed at different
points in time, and in different parts of the organization. In other
words, we needed a compositional approach, allowing to
‘arbitrarily’ combine existing software assets.

At that time, various component technologies existed (COM,
Corba, JavaBeans), but none was suited for resource-constrained
environments such as televisions (which typically run 10 years
behind on a PC in computing resources). So we could either find
another solution for our diversity problem, or adopt a component
technology and adapt it to our specific needs. As only the latter
would bring us on the learning curve of applying component
technology, our research question became (in 1996):

Can we benefit from component technology in
resource-constrained environments now, so that we
can already adjust our development process and
organization? And how will the latter be affected?

As a result, we created the Koala component technology (*96-°97)
[15] and subsequently used it to set up a product line architecture
for CE products (‘98-°99). This product line has been running for
two years now, with several products out on the market. In this
paper we provide an overview of the overall approach.

This paper is organized as follows. In sections 2-5 we sketch an
outline of our approach, starting from the business context, going
via architecture to development process and organization (we call
this scheme BAPO). Section 6 lists our experiences and compares
them to other work. We complete our paper with concluding
remarks, acknowledgements and references.

2. BUSINESS

In this section we sketch our business context.

2.1 The Product

A television consists of mechanics, electro-optics, electronics and
software. Over the past 15 years, the size of the software in CE
products has followed Moore’s law closely (see Figure 2). In the
beginning, the software just switched devices on and off, but this
was soon extended to detection and control loops, data processing
(Teletext, Electronic Programming Guide) and advanced user
interfaces (menus, animation, 3D graphics).

KBytes ROM
1000 | Moore’s
100 Law
- TV
10 -=-VCR
103
1 L) T Ll L] L} T L T L) L] 1 §
1985 1990 1995 2000

Figure 2. Growth of embedded software in CE products

It typically takes 100 software engineers 2 years to build the
software for a high-end television. This is partly due to the large
number of control algorithms that have to be implemented, and
partly to the resource constraints that have to be taken into
account. The Bill of Material (BoM) is an important issue in CE
products, as it largely determines the price; development cost can
be divided by the number of products sold (millions). Note that
the systems are (still) closed: the code is burnt into ROM and can
only be updated by a service engineer by replacing the ROM.

2.2 The Product Family

Televisions are sold in many variants. There is variation in screen
size, picture and sound quality, data processing features, user
interface, output device (tube, projection, LCD), broadcasting
standards and interconnectivity. There is also significant diversity
for different regions in the world, caused by for instance language
issues and cultural differences. The result is essentially a matrix of
product types at different price points and for different regions.

The software is influenced by most of these factors. The original
strategy for handling this diversity was to create a particular high-
end TV for one region first, then extend the functionality to other
regions, and then subset this for lower price points. Two kinds of
diversity parameters were recognized: run-time options and
compile-time switches. Options are stored in a non-volatile
memory that is programmed in the factory, allowing the use of a
single ROM for multiple product types. Switches operate at the
source code level (mostly #ifdef), and require recompilation when
setting values differently.

2.3 Problems in Handling Diversity

Various problems arose in handling diversity. We name a few:

e The distinction between options and switches requires an
early decision between compile-time and run-time diversity.
But the selection of which features go into a ROM and which
ROMs are used for which products should preferably be done

256

at a late point in time (depending on code size and factory
logistics).

The list of parameters grows over time, as new features are
added. More importantly, the ‘language’ in which parameters
are expressed is often of the wrong level, for instance relating
to specific driver parameters or to specific products.

* It was difficult to design-in new features, especially when
optionally replacing components, or when inserting code
between existing components (cf. instrumented connectors as
defined by Baltzer [3]).

¢ Last but not least: the approach did not scale to product
populations. Software used from other organizations was
usually ‘copied and edited’, instead of ‘reused as is’.

2.4 The Product Population

The products that we envisage in the near future - combinations of
old and new functionality such as improved sound and picture
(home cinema), storage (VCR, DVD, hard disk), digital TV,
interactivity et cetera - all require the ability to combine existing
parts in new ways. In the hardware we are already succeeding in
this; we have for instance plug-in modules for Dolby Digital, for
digital reception (a ‘set-top box’), and for storage. We want the
software to be equally flexible.

The classical approach to building product families is to define an
overall architecture for the family and introduce variation points a
priori for modeling the required diversity. A good example can be
found in [25], which contains a variant-free architecture [21] with
a plug-in component mechanism as variation points. However, for
at least two reasons we cannot define such an overall architecture
in practice:

* It appears to be difficult in practice to define the architecture
of future CE products in advance, as so many non-software
factors play a role, for instance hardware availability,
hardware technology, market demands, company strategy, et
cetera.

Different parts are produced in different sub-organizations,
each with their own goals, time scales, history and culture.
Even agreement on for instance naming conventions proves
to be a burden. It is out of the question that consensus can be
reached on a single global architecture.

We have coined the term product population [16] for this problem
domain, where we want to build a set of products with many
commonalties but also with many differences, with development
of parts spread over different sub-organizations within a larger
organization. We claim that we need a component technology that
stimulates the development of freely combinable components,
while at the same time we recognize that we must define at least
some architectural issues globally.

3. ARCHITECTURE

This section discusses the Koala component model, together with
some typical design patterns.

3.1 Components

Figure 3 shows a Koala component, with two ‘provides’ interfaces
at the top, a code module in the component, and two ‘requires’
interfaces at the bottom. An interface is a small set of semantically
related functions (as in COM and Java), and serves as the unit of

binding. The triangles denote the direction of function calls. A
code module implements all functions in interfaces bound with
the tip (of the triangle) to the module, and may use any function
of interfaces bound with the base to the module. There may be
more than one code module in a component, bound to different
interfaces. To delay the decision on the actual binding technique
between components, modules use logical names to implement
and use functions in interfaces. We currently use C as our
implementation language.

Figure 3. A Koala Component

Each interface has an instance name (e.g. p in Figure 3) and a type
(I1). A component can provide more than one interface, each
interface implementing one aspect of the component. Different
components may provide interfaces of the same type, making
them interchangeable with respect to those aspects. Interface types
are managed separately from components (see section 4.3).

Koala’s striking feature is that all communication of a component
with its context is routed through requires interfaces that are
bound by a third party, even access to for instance the underlying
operating system. This makes components to a large extent
context-independent: they rely on services only, rather than on
specific servers (read: implementations of services).

3.2 Connectors

Figure 4 shows three ways of binding interfaces of components: a
straight connection between interfaces (1), the use of a switch (2),
and a code module gluing two interfaces (3). Each form is a
special case of its right neighbor, and can be expressed in terms of
that.

Figure 4. Koala’s forms of binding

A straight connection between interfaces couples every function
in the ‘tip’ interface to the function with the same name in the
‘base’ interface. For this, it is sufficient if the type of the tip
interface is a super-type (i.e. a sub-set) of that of the base
interface. We introduced this feature to allow for interface
instances to grow over time (see section 3.8); it turns out to be
convenient for diversity interfaces also (see section 3.5).

257

A switch is a pseudo dynamic binding of one interface to one out
of a set of other interfaces. The setting of the switch is controlled
by a function of yet another interface, for instance of a component
that configures the system (the small one in Figure 4). A switch
can have more than two positions, and can bind more than one
interface at the same time. If Koala can determine the position of
the switch at compile-time (as explained in section 3.4), it reduces
the switch to a straight connection.

A glue module allows to insert code between the called functions
(in the tip interface) and the implementing functions (in the base
interface). We anticipate that in product populations components
will not always fit perfectly, hence this facility. It also allows to
insert tracing and logging code, and for instance thread-
synchronization code (see section 3.7). Glue functions can be
implemented in a simple expression language (a subset of C) in
Koala, or directly in C. As far as Koala is concerned, there is no
difference between a code module as shown in Figure 3 and the
glue module in Figure 4. A switch is equivalent to a conditional
expression in a glue module.

3.3 Architectural Description Language

Koala’s composition process is recursive: a connected set of
components is again a component (see Figure 5 for an example).
A configuration is a top-level component in this hierarchy with no
interfaces on the border. Only configurations can be compiled and
linked into executables.

Figure 5. A compound Koala component

To make things work, components and interfaces are described in
an architectural description language. An interface definition
declares the prototypes of functions, parameters (read: nullary
functions) and constants (read: parameters.with a value assigned
in the interface definition). A component definition declares
provides and requires interfaces, the modules and instances of
other components that it contains, and their inter connections.

The Koala compiler reads all definitions, instantiates a designated
top-level component, and generates code for all connections. For
a large part, this code will consist of #defines that equate logical
names to physical names, as explained in the next section. Where
necessary, C code is generated to resolve binding at run-time (e.g.
for some of the switches). Note that due to the code generation,
descriptions in Koala are by definition consistent with the actual
implementation of the products.

Koala’s ability to deal with product populations lies in the fact
that all knowledge about the connection between components
such as A and B in Figure 5 are property of the compound
component C. By creating a different compound component, say
C’, a different combination of a different subset of the reusable
components A, B, ... can be made for a different product.

3.4 Partial Evaluation

Koala has a partial evaluation mechanism that uses constant
folding to simplify expressions wherever possible. Basically, all
types of binding (see Figure 4) are translated to function bindings
using Koala expressions andfor C code. Then, the Koala compiler
simplifies the Koala expressions as much as possible - it cannot
optimize the C code. As a result, many of the bindings are reduced
to a simple #define, while others result in simple pieces of C code
(e.g. if-statements).

A specific example can be found in Figure 5, which implements a
variant component C that behaves as either A or B, depending on
a function (say f) in the gray interface. If f is assigned a constant
in a Koala expression at some outer-level in the component
hierarchy, then Koala reduces the switch to a straight connection
with no overhead whatsoever. If, on the other hand, f is defined
as a piece of code that calculates the setting of the switch at run-
time, then Koala generates C code for the switch to implement the
run-time binding.

This feature of Koala removes the distinction between compile-
time switches and run-time options, at least for the builders of
reusable components: they just rely on functions in interfaces. Of
course, at some outer-level, the decision between A and B still
must be made. But it can be made by the person creating the
product, hence late in the development process. If that person still
fixes the choice of the switch to say A, then we speak of late
compile-time binding. Alternatively, the person can assign code
that reads the value from a non-volatile memory, making the
choice between A and B a run-time option.

3.5 Handling Diversity

Technical diversity has two aspects: diversity within a component,
and diversity of the connections between components. We shall
discuss both in turn.

Diversity within a component concerns the ways in which a
component should behave if applied in different products. No two
products demand exactly the same of a component. This requires
some sort of component parameterization. We believe that non-
trivial components often require a long list of diversity parameters
(some people call them properties), most of which are set at
design time (or retain-their default value), while others are set at
run-time.

Koala as described above already has all of the features needed to
implement a powerful diversity parameter mechanism. Diversity
parameters are grouped into diversity interfaces, which are in fact
just requires interfaces. Glue code in the form of Koala
expressions (or C code if necessary) can be used to assign values
to parameters. Koala’s partial evaluation mechanism simplifies the
Koala expressions as much as possible, so that the original generic
code can be fine tuned into resource-friendly specific code.

Figure 6 shows an example of a parameterized component A that
embeds a parameterized component B. The parameters of B are
assigned values in terms of the parameters of A. This allows to
use different ‘languages’ for parameters at different level. For
instance, component B could be a ‘picture in picture’ component
with a window border with programmable color. Component A
could be a TV platform that is dependent on the region. The
module m can then specify the color in terms of the region.

258

Figure 6. Components with diversity parameters

One particular use of interface sub-typing is to make the types of
diversity interfaces of components as specific as possible, i.e.
specifying precisely which diversity parameters the components
require. These (different) requires interfaces can be connected to a
single (large) interface at the product level, containing the union
of all parameters, and provided by a (product specific)
configuration component. This makes very explicit which
component uses which diversity parameter, compared with
traditional techniques where all components include the global
diversity parameter file.

Diversity of the connections between components is expressed in
terms of switches (conditional Koala expressions) in the bindings
between components (see Figure 5 for an example). As already
explained above, Koala switches are used both for compile-time
and run-time diversity. When creating the product, some switches
are reduced to straight connections, while for others code is
generated.

3.6 Notifications

One recurring design pattern is the use of notifications to signal
the occurrence of (asynchronous) events. Possible implementation
techniques range from callback functions to notification managers
in the infrastructure. Our design goal for components is to make
as few assumptions about the environment as possible and be
resource friendly, therefore we reduce a notification to its bare
minimum: an outcall through a bindable requires interface.

Figure 7. Notification Interfaces

The left side of Figure 7 illustrates this. Component X can notify
the environment through an outgoing interface, and Component A
can implement this interface. The outgoing interface is dashed,
meaning that it need not be connected (if no-one is interested in
the notification). Koala ensures that X can observe whether there
is a connection, to prevent X from calling into void.

By convention, functions in notification interfaces have no return
values, and implementations may not perform any significant
processing in such functions. We discuss mechanisms to decouple
the processing from the notification in the next section.

Koala only allows one interface to be connected to a requires
interface. If more than one component is interested in receiving

the notification, then glue code has to be added, as shown in the
right hand side of Figure 7. A simple multicast can be used if B
and C are interested in all notifications. More glue code is needed
if they can only handle notifications that follow their own actions.

The mechanism sketched above is very light in weight and for us
sufficient in 90% of the cases. Note that we prefer to choose the
lightweight solution as default and add complexity only when
necessary. However, our architecture does have components with
more elaborate notification mechanisms. We use for instance call
back functions to notify the arrival of Teletext pages.

3.7 Multithreading

Software in CE products typically contains many activities that
are relatively independent. A real-time kernel provides the ability
to program asynchronous tasks (a.k.a. threads), and there is a
body of knowledge on how to satisfy real-time constraints [10].
However, resource limitations prevent the creation of too many
tasks (say more than a dozen), whereas the number of activities
easily exceeds one hundred. As a consequence, task creation
becomes a system issue rather than a component issue.

An easy way out is to define the threads of the system a priori in
the architecture and build components to use specific threads (e.g.
of high or low priority). But in a product population this approach
is not desired, as it assumes too much knowledge in advance. Our
basic solution is therefore to let components use logical threads
that are mapped to physical threads at the product level by using
Koala’s diversity mechanism. This also enables the fine-tuning of
the performance of the system at a late stage in the development
process.

To be able to map multiple logical threads to a single physical
thread, we introduce the notion of pumps and pump engines. A
pump is a logical message queue with a single dispatch function; a
pump engine is a physical message queue with a (physical) thread.
Messages sent to a pump are actually handled by the pump engine
to which the pump is allocated. Components create pumps on
virtual pump engines obtained through diversity interfaces. At the
product level these are bound to physical pump engines. Note that
this makes part of the execution architecture visible in the Koala
bindings!

Figure 8. Decoupling notifications

Figure 8 demonstrates the use of pumps to decouple notification
processing. Component A issues a notification that is handled in
component C by sending a message to a pump. At a later point in
time, the pump message is handled by the pump engine allocated
through a diversity interface, and on that pump engine’s thread, C
can make a down call to B. The component F contains the pump
engines defined at the product level.

259

If two components containing pumps are mapped to the same
pump engine, then their activities are implicitly synchronized, and
therefore need no explicit synchronization. But this mapping is
only defined at the product level, so a component builder has no
access to this information, and would be tempted to make his
component thread-safe. As this would increase the complexity and
resource usage, by default components need not be thread safe.
Instead, the product builder should add synchronization where
needed.

Figure 9. Synchronizing components.

Figure 9 illustrates this. Components B and C are mapped to the
same pump engine and do not require synchronization. But A is
running on a different engine, so when A calls B, the inserted glue
code must synchronize with B’s and C’s pump engine.

3.8 Coping with Evolution

An important design criterion for Koala was the ability to add
functionality to a component without disturbing existing users of
that component. Consider a component C that is used in product P
and to be used in product Q as well. For Q, functionality must be
added to C. Of course, existing products P out in the market will
never see the change to C, but if a variant of P is to be produced,
then preferably the new version of C must be used (e.g. to avoid
double maintenance), and must still work in that context.

We have defined several rules of evolution.

* Interface definitions may not be changed (after they have
been frozen in development). New ‘versions’ of an interface
definition must have a new name.

¢ Component definitions may change, internally, of course, but
also with respect to the externally visible interfaces. The
following three kinds of modification are allowed:

o Add a provides interface of a new type (e.g. an ITuner2
next to an ITuner);

o Widen a provides interface to a sub(!)-type;

o Narrow arequires interface to a super-type.

A fourth kind of modification, removing a requires interface, is
not allowed, as the Koala compiler will complain when a non-
existing interface is bound. It is however allowed to have a
requires interface that is internally not connected. Also note that
what we describe above is a form of sub-typing, more specifically

of covariance and contra-variance. See e.g. [23] (section 6.3) for
more information.

4. DEVELOPMENT PROCESS

We developed the Koala component model and the accompanying
product population architecture initially within Research. When
we started to apply this within our business groups, we found that
the established software development processes needed
adaptation. We report the main changes in this section.

4.1 Composition versus Decomposition

The first and most important change is a psychological one.
Software developers traditionally start from a (single) system
specification. They decompose the system into subsystems, the
subsystems into components (see the left hand side of Figure 10),
and then implement the components and integrate them into
subsystems and ultimately the system.

Figure 10. From Decomposition to Composition

We want components to be combined in multiple ways into
subsystems, and subsystems in multiple ways into systems. In
other words, we want composition rather than decomposition (see
Figure 10), or a graph rather than a tree as design hierarchy.

One fundamental difference is that in a decomposition approach it
does not matter where a certain feature is implemented, as long as
it is implemented somewhere in the system. In a composition
approach this does matter, since some components may be present
in other systems, while others may not be included.

So, developers have to start thinking in terms of components that
can be clicked together in different ways to obtain different sets of
functionality. Moreover, they cannot ask for the product
specification anymore, since one of the major risks is that
components become too product specific. Koala provides several
means to separate product-specific information from components,
e.g. the use of requires and diversity interfaces.

The other end of the spectrum is that developers fall into a
‘genericity’ trap, and start developing the ultimate reusable
component. Careful roadmapping of the product population must
prevent this, as will be explained in section 4.6.

4.2 Documentation

Traditionally, software documentation consists of a requirements
document, a global design defining the various subsystems, and
per subsystem a detailed design defining the components. The
documentation is written in the future tense (‘the system shall’),
before the software is created, and is rarely updated if changes are
made to the design during development. Documentation of
reusable components, however, should be written in the present
tense (‘the component does’), and should reflect the actual
implementation instead of the original design.

260

For that reason we write data sheets for components, inspired by
datasheets for electronic devices such as ICs. A datasheet is a
document of typically 10-20 pages that describes the component
from an external (user) point of view. The data sheet starts with a
Koala picture of the component, then lists the main ‘selling’
features of the component, lists the interfaces, and provides
observable implementation properties of the component such as
code size and performance data. It concludes with application
notes, showing typical usage of the component. The data sheet is
written before the development starts, and is updated when the
component has been completed.

Component datasheets list interfaces by name and type, but refer
to interface data sheets for the semantics of those interfaces. An
interface data sheet is a document of typically 10-20 pages that
starts with an overview of the concepts behind the interface (a
‘model’), and then lists the functions with informal descriptions of
their semantics (much in the style of Java documentation). The
document concludes with application notes (how to use the
interface) and optionally implementation notes (how to implement
the interface). Note that we describe all interfaces in interface data
sheets, even if an interface is only provided or required by a single
component.

A third category of documents is the component implementation
notes, which describe how the component is built internally out of
other components and glue code. Of course, this document refers
to the data sheets for the subcomponents. Furthermore it lists the
major design decisions. It does not explain the implementation in
great detail; for that we just add comments to the code.

4.3 Repository

Component and interface definitions are stored in a repository that
does not reflect the design hierarchy. Definitions of compound
components are stored next to definitions of their subcomponents,
and both are equally reusable. Put differently, component
instances can be nested, but component definitions cannot. The
preferred way of creating new products is to start by selecting and
combining large compound components. Only when a large
compound component does not satisfy the requirements, should a
product creator turn to more basic components.

Interface
Definitions

Component
Definitions

B

Public

Private

Figure 11. A Package

We do however have some structure in our repository, and that is
in the form of packages. A package is a set of interface and
component definitions, where each definition is labeled public or
private (see Figure 11). Public definitions can be used in other
packages; private definitions are limited to the package itself. As a

rule, a package is developed by a single team in a separate project
at a single site. The scoping thus introduced helps to streamline
the development process: changes to private definitions can be
made more easily than changes to public definitions.

A package can contain a single large public compound component
that acts as a subsystem in products, and a set of smaller private
components from which the compound component is constructed.
Typically however, a package contains more than one public
compound component, each with a different combination of a
different subset of the smaller private components, so that it
implements a different set of requirements. Also, packages
sometimes contain small public components that can be used as
glue or as ‘plug-ons’. See [18] for more information on our ways
of handling diversity.

4.4 Configuration Management

The established way of managing the software in our organization
was to put all software in a single configuration management
(CM) system, and use it to manage revisions (versions in time)
and variants (versions in space). The CM system also manages the
build process and multi-site development. We feel that product
populations put different requirements on the CM strategy, and
describe here how we deviate in our approach.

Our software development is essentially multi-organization, multi-
site. Each site hosts one or more projects, and each project
develops one or more packages. As a rule, a project either creates
packages with reusable software (called ‘subsystems’ for historic
reasons), or packages that contain end products. As each package
is developed at a single site, changes within the package are much
easier to achieve then changes that involve multiple packages.

Each project has its own CM system that manages the sources of
the packages allocated to that project. Each project publishes its
packages on the intranet in two forms: daily as browsable
directory structure, and - roughly - monthly in the form of tested
releases downloadable as ZIP file. The first is to enhance
communication and discussion, the second helps to safe guard
development. Each team downloads releases of other packages on
demand, and imports them into their own CM system, thus
maintaining a fine-grained history of their own packages and a
coarse-grained history of other packages.

The CM systems are used to manage revisions (versions over
time) and temporary variants (one developer fixes a bug while
another adds a feature). We do not use our CM systems to manage
permanent variation: we use Koala instead! The most important
reason is that this brings variation into the realm of the architects
instead of the configuration managers. Furthermore, Koala has
powerful facilities for handling variation, such as switches that
can be set at a late point in the development process or left as run-
time option.

We also want to keep our build process separate from our CM
system (which is not possible if the CM system handles variation).
Reasons vary from practical (more efficient, easier to use off-line,
e.g. in the plane!) to strategic (no lock-in on CM vendors). More
information on our CM approach can be found in [17].

4.5 Development Environment

Our development environment consists of a layered set of tools.
The use of each tool is in principle optional, though each tool

261

depends on all of the previous tools (and in practice, most
developers use all of the tools).

e The Koala compiler, which reads component and interface
definitions and generates C code and header files.

‘KoalaMaker’, which produces a makefile to compile Koala
components into object code.

® A set of master makefiles to control the build process on
different platforms.

Microsoft Developer Studio, for editing and debugging code.

¢ A small set of Developer Studio plug-ins to help developers
perform frequent tasks.

The first three tools run on Unix and PC. The first two tools are
optimized for speed, and process the code for a product in less
than a minute (on a 256MB 450MHz Pentium III, with 500
component and 1000 interface definitions). A large part of the
software runs and can be tested on a PC; in fact, we use Koala’s
diversity facilities to support our software on multiple platforms.

4.6 Integration and Testing

Testing is done at four levels: testing of individual components, of
consistency within a package, of consistency between packages,
and of products. We shall discuss each in turn.

Within a package, each Koala component is tested individually by
building a simple test application around the component that
allows to exercise the component’s functionality. Koala’s features
of binding and gluing make this much simpler then in
conventional approaches. Functionality required by a component
is provided either by using other (already tested) components, or
by stubbing the functions, depending on the complexity of the
functionality. The test application is stored in the repository just
as any other component. The component developer is responsible
for defining and performing the tests.

Packages are tested for internal consistency by thoroughly testing
all the public components of the packages with various diversity
settings before each release. For functionality required by the
package, we use (tested) releases of other packages if there is a
strong dependency (as explained below), or stubs if there is a
weak dependency. Package testing is the responsibility of a
separate team within the same project.

Figure 12. Strong Dependencies between Packages

A package p has a strong dependency to a package q if it uses so
much of the functionality of g that development cannot proceed
without having g available. We discourage strong dependencies
between packages because they sequentialize development. Figure
12 shows a simplified example. TV services cannot be built

without a TV platform, and the Electronic Program Guide and
Teletext Services cannot be built without a Teletext platform. But
applications (user interfaces) can be built on a UIMS by stubbing
the TV functionality. Note that all packages need the (computing)
infrastructure.

To check the consistency between packages, an integration of the
packages is required. In principle, every product project performs
such an integration. To prevent different teams from running into
the same problems, we have a separate project that performs a pre-
integration, by building one or more reference products.

Figure 13. Subsystem Deliveries to Products

Figure 13 illustrates this approach. The subsystems (boxes marked
with ‘S’) are delivered independently to products (marked with
‘P’). This decouples development processes considerably. When a
subsystem reaches a stable version, products that can incorporate
the version may do so, while products that are in a critical phase
of release may keep on using an older version. The advantage is
speed: in traditional platform approaches, a subsystem innovation
must await platform integration before being made available to
products. The downside is the added complexity of guaranteeing
compatibility between multiple versions of subsystems. See [19]
for an inventory of problems in independent deployment.

The last form of testing is at the level of products. Software and
hardware are submitted to a long series of tests before the product
is taken into production. Each product is tested individually
before release. Our product population approach currently does
not give benefits here, other than that new products which are
‘minor variants of existing products need less testing for the parts
that have been unchanged.

arch

3

&

i

sub1

ey

”
£

s poven
7]
o

isub3

R

fu—

Figure 14. Roadmapping Subsystems and Products
4.7 Roadmapping

We favored composition over decomposition in section 4.1, but in
fact a careful balance between the two is required when building
product populations. Too much emphasis on decomposition may
result in components that are too product specific, whereas too
much emphasis on composition may result in components that are
too. generic and (partly) never used. The (pure) composition
approach has more disadvantages:

262

¢ Features cannot be removed since there may be products that
use or plan to use them.

¢ Product plans can only be made if the components are
already available, but new product features usually require
updates of the (reusable) components.

The answer is roadmapping: the planning which components are
developed when and by whom, and how they are used in products
in the next few years. For hardware components this is already
common practice in our organization; for software components we
are currently installing such a process.

The basics of roadmapping are sketched in Figure 14. The top
horizontal line depicts the architecture, which constantly evolves
over time (the horizontal axis). The gray lines represent subsystem
packages and their evolution. The bottom (black) lines represent
products. The vertical arrows denote dependencies (deliverances).
Figure 14 is symbolic: it does not depict a real-life situation.

At this moment we have more than 20 subsystem packages and
over 10 products. As a result, we cannot represent all releases and
all dependencies in a single picture. Moreover, we do not want to
maintain such a road map centrally, as it concerns too much
information. Therefore, we are distributing the roadmap over the
projects, letting each project specify the roadmap of its packages.
This is done in XML and is published by the projects on the
company intranet. Simple tools can then be used to check the
consistency of the overall roadmap.

More information on our roadmapping can be found in [20].

5. ORGANIZATION

In the previous section we have seen how our approach influenced
the development process. The software development organization
also had to be adapted to support building product populations.
This section describes how we did that.

5.1 Four Types of Organization

Figure 15 shows four types of organization that we encounter in
our company. The first, top-left, is classical. Different teams are
set-up for creating different products. Each team creates all of the
software for one product. If there is any reuse, then it happens by
copying code from one product project to another.

The second type, at the bottom-left, consists of product teams and
capability teams. The capability teams act as internal software
house: they lend their people to the product projects, and these
people are physically located at the site developing the product. It
is more efficient than the first type, since we can create experts in
certain areas, such as video, audio, or data processing, or user
interfaces. Reuse happens because capability team members bring
their software with them when they join a product project.

In the third type of organization, at the top-right of Figure 15, the
members of capability teams remain located at their own site, but
are directly paid by the product projects. The capability teams
strive for the creation of a single software package; the members
paid by the product projects have as task to ensure the suitability
of the package for the specific products.

A variant on this type is when product teams send their people to
work with capability teams for a period of time, again to ensure
that the software matches the product’s requirements.

The fourth type, sketched at the bottom-right, contains an internal
department that creates and sells reusable components within the
company. The capability teams still consume requirements from
different product teams, but it is their own responsibility to
convert them into functionality.

Figure 15. Types of Organization

We have made these four types explicit, since many believe the
fourth type to be the true answer to software reuse, whereas the
first and second type are actually occurring in most organizations.
Our organization is currently of the third type. Our ambition is to
move towards the fourth type of organization, but we have strong
doubts whether that form of internal software reuse will actually
be feasible on the short term. We believe that product population
development requires a mix of types Ill and IV.

5.2 Introducing the Approach

We have introduced this product line successfully into part of our
organization: it is now being used in four business groups for the
creation of high-end TVs with classical picture tubes, Flat TVs,
projection TVs, and mid-range TVs. We have not succeeded yet
in integrating the software development of for instance DVDs and
VCRs. We feel that it may be useful to sketch the way we have
introduced the product line, and list some of the success factors.

The Koala component model was developed by research on the
specific request of our business group TV to find a solution for
handling diversity. Darwin [12] served as leading example, and to
a lesser extent Microsoft COM {14]. It was very important to
create a solution that caused no overhead; otherwise it would not
have been accepted (in fact, use of Koala tends to result in less
code as compared to traditional approaches). Also important was
to limit the complexity of Koala and associated tools. The
compiler consists of 13000 lines of C++ code, and the use of
Koala is taught in one day.

The product line architecture was also set-up in Research, again
on the specific request of our business group TV. Only few people
were involved in the beginning (5-10); most software developers
were still maintaining and evolving the previous generation of
software. The architecture team consisted of three people, a
domain expert, a software technology expert, and a person with a
strong feeling for the business aspects. Two sponsors supervised
the work, the TV software development manager, and the overall
software technology officer.

263

After showing initial feasibility, the team was rapidly expanded
and moved from research to the business groups. The researchers
also temporarily joined the business groups. In a relatively early
phase, a lead product was selected. We chose one with high
visibility but low risk if things went wrong. The development was
multi-site from the beginning, which we handled by carefully
aligning our architecture with the organization. The four places
where there still was a mismatch between architecture and
organization all turned out to cause extra complications.

The first - lead - product actually did not make it to the market
for commercial reasons, but the second product did. We now have
two business groups that have products with software based on
our approach, and two that will follow soon.

6. EXPERIENCES AND RELATED WORK

In this section we report on our experiences with the approach
described in the previous sections, and we relate our work to other
work found in literature.

6.1 The Overall Approach

We have created a software product line by starting from business
requirements, defining the architecture, and subsequently tuning
the development process and organization towards this (BAPO).
Jacobson et al. inspired us in doing so [9]. BAPO is part of our
method on component oriented platform architecting (COPA); the
work described in this paper serves as one of the two cases in our
COPA tutorial [1]. Our (necessary) involvement with process and
organization caused many a battle within our organization, as
traditionally these are the realms of different sets of people
entirely. We believe that we succeeded in reaching our business
goal with our architecture and component technology, but we still
have a tough job in preventing our development process and
organization from falling back to classical product development.

6.2 Composability and Variability

Two important issues arise in product lines: composability and
variability. The former concerns how well two pieces of software
fit if they have not been developed together; the latter concerns
the degree in which one piece of software can be adapted to fit
into an application. To give an example, the architecture described
in [25] scores high on variability through the use of component
plug-ins, but low on composability. Jan Bosch [6] addresses these
problems; see also chapter 6 of [7].

6.3 Koala

Koala was directly derived from Darwin [12], as a result of the
ARES project [2]. For us, Darwin’s main feature was requires
interfaces that can be bound by third parties, as it allows us to
write components with no implicit assumptions about their
context. GenVoca [4] also promotes decoupling of components
but through a parameter mechanism. Microsoft COM [14]
supports connectable interfaces, though in practice these are used
in specific cases only, such as for notification. CORBA 3 [22]
supports receptaclesfor the late binding of used components.

Actually, the CORBA 3 component model closely mirrors Koala:
facets for provides interfaces, receptacles for requires interfaces,
and artributes for diversity interfaces. CORBA3 also defines event
sinks and sources, for which we use ‘normal’ interfaces in Koala,
be it that we model a provided event as a requires interface.

Of course, Koala is not the only architectural description language
(see [13] for a recent overview). We believe that Koala is the
ADL that is most suited for product families or populations. Also,
to the best of our knowledge, Koala is the only architectural
description language that is widely applied in an industrial
context.

Koala’s lightweight binding mechanism, designed for resource-
constrained systems, has two interesting side effects. First of all, it
allows us to route all context dependencies through requires
interfaces bindable by a third party, thus enhancing the context
independence of components. Secondly, it allows us to apply
component technology at large and at small scale, thus obtaining
both reuse in the large and reuse in the small.

We anticipated in 1996 that non-proprietary technologies such as
Microsoft’s COM [14] would be applicable in TVs in five years
time, and created Koala to bridge the gap. Now, in 2001, we
foresee a prolonged use of Koala for a number of reasons. Most
importantly, as long as we’re building closed systems, Koala
perfectly suits our needs, without introducing any overhead
whatsoever, allowing us to apply component technology at a small
grain size. Secondly, Koala has elements not readily found
elsewhere, such as requires interfaces and an explicit description
of architecture. Finally, we will use off-the-shelf component
technologies in our high-end products in the near future, but the
use of Koala will then migrate to mid range and low-end products.

6.4 Organizing Reuse

We have shown in Figure 13 how subsystem teams deliver their
packages to products: there is no integration team in between that
first integrates all subsystems before products get the software.
There are actually different strategies for organizing reuse, as we
illustrate in Figure 16. We shall also compare this with Figure 15.

/ \ N\

QP

®
®

Figure 16. Strategies for Organizing Reuse

The top left strategy is the traditional one: different products are
created without coordination and with at most ad-hoc reuse.
Organization types I and II in Figure 15 can be used for this.

The bottom left strategy is proposed in [24]: there are only
product teams creating products, but there is a central architecture
team that ensures that components are reused and made reusable.
Here too, organization types I and II are applicable. This is a very
promising approach, although we have doubts on how well it
scales to large organizations.

The top right strategy is used in many product line approaches, for
instance in [25]. The software consists of separate subsystems, but
these are integrated by a central platform team before being made

264

available to product teams. Organization type IV must be used
here. The advantage is better control of quality; the disadvantage
is the extra step in the process: it will now take long for a new
feature to ripple through the process. Also, the approach does not
scale well to very large organizations.

Our strategy is the bottom right one, and can be used both with
organization types III and IV. We believe that this is the only
strategy that scales well to large organizations.

Jan Bosch recognizes four types of organization [5]. The (single)
development department is not applicable to our case, as Philips is
traditionally already organized in terms of business unmits, lines
and groups. This is in fact the second type recognized in [5]; it
corresponds with type I in Figure 15. Our types II-IV can be
mapped to the multiple domain-engineering units in [5], but we
make a further distinction with respect to the location of the
people and the product specificity of the software.

7. CONCLUDING REMARKS

Products in the consumer electronics domain show an increasing
integration of functions. While different types of products can be
treated as individual product families, their integration requires
reuse of software berween the families. We have argued that this
asks for a compositional approach. Key element here is context
independence, or more precisely the ability to use a component in
contexts other than the one in which it was originally developed.
Our component model stimulates context independence through
the explicit modeling of requires and diversity interfaces. The
model is simple to learn, and provides our developers with an
easy to use terminology to handle diversity and evolution.

When introducing this technology, it appeared that changes had to
be made to the software development process, i.e. the way the
software is created, documented and managed. We have described
some of the key differences in our paper, and have also shown
how the organization must be made to match this process.

The component model was created in 1996 and 1997, the product
line architecture set up in ‘98 and 1999, and in 2000 and 2001 we
have set a small number of products on the market with this
technology. In the coming two years, this number will increase
strongly. Between 100 and 200 software developers are currently
involved, distributed over 10 sites.

8. ACKNOWLEDGMENTS

The work described in this paper is the result of the prolonged
attention of Hans Aerts, Hans van Antwerpen, Erik Kaashoek,
Henk Obbink, Gerard van Loon, the author, and many others. I
would like to thank Chritiene Aarts and Hugh Maaskant for
reviewing this paper.

9. REFERENCES

[1] Pierre America, Jiirgen Miiller, Henk Obbink, Rob van
Ommering, COPA (Component Oriented Plaiform
Architecting), sheets available at

http://www.extra.research.philips.com/SAE/COPA/

[2] ARES, Architectural Reasoning for embedded Software,
ESPRIT Project 20477,
http://www.cordis.lu/esprit/src/20477.htm .

[3] Robert Balzer, An Architectural Infrastructure for Product
Families, Proceedings of the Second International ESPRIT
ARES Workshop, LNCS 1429, Springer Verlag, Berlin

Heidelberg, 1998, p158-160.

Don Batory, Sean O'Malley, The Design and Implementation
of Hierarchical Software Systems with Reusable
Components, ACM Transactions on Software Engineering
and Methodology, 1 no. 4, pp. 355-398 (October 1992)

Jan Bosch, Organizing for Software Product Lines,
Proceedings of the 3rd international workshop on the
development and evolution of software architectures of
product families, Las Palmas, March 2000

(4]

[5]

[6] Jan Bosch, Design & Use of Software Architectures,
Adopting and evolving a product-line approach, ACM Press

Books, Addison-Wesley, ISBN 0-201-67494-7

Ivica Crnkovic, Magnus Larsson, Building Reliable
Component-Based Systems, book to be published by Artech,
2002

Patrick Donohoe (Ed), Proceedings of the First Software
Product Line Conference (SPLC1), Denver, August 2000,
The Kluwer International Series in Engineering and
Computer Science, Volume 576.

(7]

(8]

[9] Ivar Jacobson, Martin Griss, Patrick Jonsson, Software Reuse
— Architecture, Process and Organization for Business
Success, Addison Wesley, New York, 1997, ISBN 0-201-

92476-5.

[10]Mark H. Klein et al., A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis for Real-
Time Systems, Kluwer Academic Publishers, ISBN 0-7923-
9361-9.

[11] Frank van der Linden (ed), Development and Evolution of
Software Architectures for Product Families (Second
International ARES Workshop, Las Palmas de Gran Canaria,
Spain, Springer-Verlag, LNCS 1429, February 1998.

[12] Jeff Magee, Naranker Dulay, Susan Eisenbach, Jeff Kramer,
Specifying Distributed Software Architectures, Proc.
ESEC95, Wilhelm Schafer, Pere Botella (Eds.) Springer
LNCS 989 pp. 137-153 (1995)

[13]N. Medidovic, R. N, Tayler, A Classification and
Comparison Framework for Software Architecture
Description Languages, IEEE Transactions on Software
Engineering, 26(1):70-93, January, 2000.

265

[14] Microsoft COM, http://www.microsoft.com/com/

[15] Rob van Ommering, Frank van der Linden, Jeff Kramer, Jeff
Magee, The Koala Component Model for Consumer
Electronics Software, IEEE Computer, March 2000, p78-85.

[16] Rob van Ommering, Beyond Product Families: Building a
Product Population?, Proceedings of the 3rd international
workshop on the development and evolution of software
architectures of product families, Las Palmas, March 2000.

[17]1Rob van Ommering, Configuration Management in
Component Based Product Populations, 10th International
Workshop on Software Configuration Management, May 14-

15, Toronto, Canada, http://www.ics.uci.edu/~andre/scm10/
[18] Rob van Ommering, Mechanisms for Handling Diversity in a

Product Population, Fourth International Software

Architecture Workshop, June 4-5, 2000, Limerick, Ireland

" [19]Rob van Ommering, Techniques for Independent

Deployment to Build Product Populations, WICSA 2001:
The Working IEEE/IFIP Conference on Software
Architecture, Amsterdam, The Netherlands, August 28-31,
2001.

[20] Rob van Ommering, Roadmapping a Product Population
Architecture, Fourth International Workshop on Product
Family Engineering, Bilbao, Spain, October 3-5, 2001.

[21] Dewayne E. Perry, Generic Architecture Descriptions for
Product Lines, Proceedings of the Second International
ESPRIT ARES Workshop, LNCS 1429, Springer Verlag,
Berlin Heidelberg, 1998, p51-56.

[22] Jon Siegel, CORBA 3 Fundamentals and Programming, 2nd
Edition, John Wiley & Sons; ISBN: 0-471-29518-3.

[23] Clemens Szyperski, Component Software, Beyond Object-
Oriented Programming, Addison-Wesley, ISBN 0-201-
17888-5, (1997).

[24] Peter Toft, Derek Coleman, Joni Ohta, A Cooperative Model
for Cross-Divisional Product Development for a Software
Product Line, Proceedings of the First Software Product
Lines Conference (SPLC1), August 28-31, 2000, Denver,
USA, p111-132.

[25]Jan Gerben Wijnstra, Supporting Diversity with Component
Frameworks as Architectural Elements, Proceedings of the
22" International Conference on Software Engineering,
Limerick, June 4-11, 2000, p. 51-60.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

