
Taming the IXP Network Processor ∗

Lal George
Network Speed Technologies, Inc

lg@network-speed.com

Matthias Blume
Toyota Technological Institute at Chicago

blume@tti-c.org

ABSTRACT
We compile Nova, a new language designed for writing network
processing applications, using a back end based on integer-linear
programming (ILP) for register allocation, optimal bank assign-
ment, and spills. The compiler’s optimizer employs CPS as its in-
termediate representation; some of the invariants that this IR guar-
antees are essential for the formulation of a practical ILP model.

Appel and George used a similar ILP-based technique for the
IA32 to decide which variables reside in registers but deferred the
actual assignment of colors to a later phase. We demonstrate how
to carry over their idea to an architecture with many more banks,
register aggregates, variables with multiple simultaneous register
assignments, and, very importantly, one where bank- and register-
assignment cannot be done in isolation from each other. Our ap-
proach performs well in practise—without causing an explosion in
size or solve time of the generated integer linear programs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code generation;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—data types and structures

General Terms
Algorithms, Performance, Languages.

Keywords
network processors, Intel IXA, integer linear programming, reg-
ister allocation, bank assignment, programming languages, code
generation.

1. INTRODUCTION
Network processors are designed to meet the demands of next

generation networks: cost, scalability, and performance of packet-
manipulation applications. To achieve very high execution speed

∗This works was done at Lucent Technologies, Bell Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

��

��
��

��

�	

�

�

Shifter

A Mux B Mux
SDRAM
Memory

256 Mb

Store
Transfers

Transfers

SRAM
Memory

8Mb

Load

Store
Transfers

Transfers

8 SDRAM 8 SRAM

8 SDRAM 8 SRAM

Load

L

16 16
GPR GPR

LD

BA

SD S

Figure 1: Micro-engine architecture

when processing data at gigabit line rates, network processors such
as the Intel IXP employ fairly unusual designs which make it hard
to write programs for them. Our work is an attempt to address this
problem. We have focused on the IXP1200, but all of the ideas
carry over to newer generations of the architecture.

The IXP1200 consists of a StrongARM core and six micro-engines
with hardware supported multi-threading. Figure 1 shows the basic
architecture as seen from the vantage point of a single micro-engine
thread. There are six register banks: two general purpose banks (A
andB); two banks forming the interface to external SRAM mem-
ory (L andS); and two as the interface to external SDRAM memory
(LD andSD). TheL andLD transfer banks are the destinations for
all memory loads,S andSD the sources of all stores.

Input to the ALU can come fromL , LD , A, or B, but each ofA,
B, andL ∪LD can supply at most one operand. Results from the
ALU can go toA, B, S, or SD. There is no direct path from any
register in a transfer bank to another register in thesame transfer
bank. Not shown in the figure is an on-chip scratch memoryM ,
also accessed viaL andLD .

1.1 IXP programming issues
To the compiler, the IXP hardware presents a combination of

several difficult problems for which there are no good published
heuristics. As a result, the state-of-the-art in programming the IXP
is still (a very quirky) assembly. A high-level programming lan-

guage for the IXP and its compiler must address:

Few registers: Because of the penalty for memory accesses, lack
of data caches, and real-time constraints, spilling (not to men-
tion the use of a stack) is nearly intolerable.

Bank assignment: The IXP has many different register banks with
quite different characteristics. Which program variable should
be allocated to which bank and when?

Register aggregates:Transactions to memory are performed in
sets of adjacent registers calledaggregates. Several aggre-
gate sizes anywhere in the range 1. . .8 occur in most pro-
grams. Where should an aggregate be allocated within a
bank? If the bank is fragmented, which variables should be
moved out to accommodate the aggregate, where should the
evicted values go, and when should this happen?

Limited data paths: After a variable has been moved toS or SD,
it cannot be moved back to another bank without going through
memory. If its value is required elsewhere in the program,
then it should have been duplicated before being moved. When
and how should such duplication occur?

Data structures and alignment: Access to SDRAM memory is
restricted to 8-byte boundaries and access to SRAM to 4-byte
boundaries. Real-world packet data does not respect these
alignment requirements. How can one effectively deal with
misalignment in conjunction with header field extraction?

Fine control: How should one provide the necessary knobs to ac-
cess specialized hardware registers for I/O and concurrency
control in a high level language?

1.2 Our Approach and Contributions
The Nova language and its compiler address all of these issues

with good results:

Optimal bank assignment: Our formulation of integer-linear pro-
gramming (ILP) generates an optimal bank assignment in-
cluding spill considerations.

Allocation of aggregates: Allocation of aggregates strongly inter-
acts with bank assignment and is difficult to solve heuristi-
cally. Therefore, we use ILP to solve the two problems to-
gether.

Static single use:Our compiler makes use of astatic single use
property enforced for certain variables, enabling the register
allocator to place these variables into multiple registers at the
same time when doing so is beneficial.

Typed language: Nova’s static type system is stratified into two
layers: typesand layouts. Record- and tuple types describe
collections of word-size data that typically would be stored
in collections of registers. Other types are related to the man-
agement of Nova’s control structures. The typing rules guar-
antee that no memory allocation (stack or heap) is required
for implementing control.

Layouts: Layouts elegantly deal with alignment issues and bit-
level data access, resulting in efficient and easy-to-maintain
code.

Practical demonstration: Experimentation with our prototype pro-
vides evidence that the techniques are successful in compil-
ing real-life programs—with compile times short enough to
accommodate an edit-compile-debug cycle.

2. RELATED WORK

2.1 Code Generation
Imagine a “mini-IXP” where the transfer banks have four regis-

ters, and consider a program that first fills theSbank with valuesu,
v, w, andx. Along some control path starting at this instruction, the
variablesv andx might go dead, leaving the register file with holes.
Later on, the program might require sufficient contiguous space for
allocatingy andz:

u,v,w,x = sram(addr1)
...

v & x are dead
y, z = sram(addr2)

u w
register file

Which variable should be evicted to accommodate the new al-
location? Eitheru or w would do, as sufficient space would then
be made available. But the best choice might also depend on life-
time, location, and usage constraints of the other variables in the
program. The literature is filled with both heuristic and ILP-based
techniques for similar problems. However, none of them apply di-
rectly to the IXP, nor can they easily be adapted.

For example, past work on handling floating point register pairs
or overlapping registers (such asAL, AX, EAX on the IA32) makes
the assumption that something to be allocated to the larger register
will always stay together. This results in a simpler picture since
individual smaller-sized pieces will have identical live ranges and
never get considered in isolation from each other [19, 21].

In their work on compiling for irregular architectures, Kong and
Wilken [19] as well as Scholz and Eckstein [21] insert register-
register copies at strategic points to start a new live range. This
gives their algorithm more freedom in the choice of register banks
or memory. Their optimization technology is ultimately responsi-
ble for determining if the copies are necessary. Given that there
are six register banks on the IXP, it is not clear where such copies
should be inserted and what they would accomplish. In contrast,
we do not insert copies into our input program, but our ILP formu-
lation is free to insert an inter-bank move at any program point as
necessary.

Tallman and Gupta [24] describe a bit-width aware register allo-
cation algorithm where static analysis is used to compute the varia-
tions in the bit-width over the lifetime of a variable. This informa-
tion is used to construct an interference graph that aids in packing
several variables into a single register. The allocation of aggre-
gates to transfer banks can be seen as a similar packing problem
(at register-granularity). Unfortunately, the analogy does not carry
very far since IXP aggregates do not have to be stored in adjacent
registers all of the time. There are only a few specific program
points where aggregation matters; at all other points it does not
have to be taken into account (at least not directly). Not even the
live ranges of individual members of any given aggregate will nec-
essarily coincide.

Fu and Wilken [15] investigated the problem of reducing the
number of variables and constraints in an ILP model for the IA32
without compromising optimality with the goal of achieving faster
solve times. As described later (Sections 8 and 9), we had to deal
with similar problems, arriving at similar solutions.

Dealing with multiple register files in clustered VLIW architec-
tures dates back to the Bulldog compiler [12]. The problem in clus-
tered architectures is that of keeping related registers together. On
the IXP we face the dual problem of keeping the operands of a sin-
gle instruction in different banks, taking the architecture’s limited
data paths between banks into account.

The register allocation and bank assignment on the IXP is diffi-
cult enough that we do not consider the integration of scheduling,
or memory bank assignment. This is a shortcoming that will have
to be addressed in future work. Since memory latencies differ from
bank to bank, a solution to this problem will have to take the multi-
threaded nature of IXP applications into account.

Let us come back to our mini-IXP with transfer banks of size
four. Consider a following program that contains two SRAM store
instructions with a common operandx:

sram(addr1) = u, v, x, w
.
.
.

sram(addr2) = a, x, b, c

The different positions ofx in the list of operands creates con-
flicting constraints for its allocation to a register in the transfer
bank. We could address this problem by making copies ofx, us-
ing a different copy in each of the conflicting instructions. Since
making a physical copy increases register pressure, optimal place-
ment of the copy instruction is intertwined with optimal register-
and bank assignment itself. Not always are all copies required.
Which ones are, however, depends on other decisions of the register
allocator. For example, suppose the last use ofx is in an instruction
like:

sram(addr3) = y, x, z

This use ofx is compatible with one of the other two uses (but not
with both), so an existing copy ofx might be able to do double-duty
here. But not before register allocation is done do we know which
one, if any. The traditional approach is to make sufficiently many
copies whenx is defined and to rely on subsequent coalescing to
eliminate the ones that are unneeded [16]. The idea ofcloning (see
Section 10) makes it possible for the same technique to work in an
ILP-based allocator.

2.2 Programming Packet Manipulation
From the programmer’s point of view, one of the most tedious

and error-prone aspects of packet manipulation is that of header
field extraction. Depending on sizes and offsets, a field might be
aligned with the start or the end of a word, it might reside inside a
word, or it could straddle a word boundary.

To extract a field requires a different sequence of instructions
in each case, and the slightest change to one of the sizes has the
potential of changing the situation for many fields, making it dif-
ficult to maintain or enhance hand-crafted machine code. The few
existing compilers for higher-level languages on the IXP (such as
Intel-C) do not provide the language support necessary to improve
the situation.

The next section presents an overview of the Nova programming
language with emphasis on the salient design choices, and the se-
mantics of layout and overlay specifications. Section 4 gives an
overview of the CPS-based front end of our prototype implemen-
tation. The bulk of the paper (Sections 5 through 10) presents our
formulation of the ILP optimization problem, and lastly we finish
with performance results on stock hardware and conclusions.

3. THE PROGRAMMING LANGUAGE
Nova is a modern, lexically-scoped, strict, statically typed, left-

to-right order, call by-value programming language. It has many
of the familiar control constructs including functional abstraction

and exceptions, but can be compiled to a FORTRAN-like runtime
model.

Nova provides value aggregation through record- and tuple-types
as well as arrow- and exception-types for describing arguments that
are functions or exceptions. There is no polymorphism.

3.1 Inexpensive to Implement
Compiled Nova code must be able to fit within one or two thou-

sand words of IXP microengine instruction cache. The code will
typically implement the fast path of some network processing ap-
plication and must be as efficient as possible.

Our language design aims at helping in this regard by avoiding
constructs that could become expensive. In particular, unless reg-
ister allocation requires spills (which is very rare), memory alloca-
tion and memory access are never implicit but always syntactically
apparent. This means that a number of popular features have been
intentionally left out:

no recursive types Nova does not have support for recursive alge-
braic types such as lists or trees because, in general, values
of these types would have to be memory-allocated.

no stack Nova functions can be mutually recursive, but all recur-
sive calls are restricted to be in tail-call position. Further-
more, the absence of recursive types prohibits self-application,
making it impossible to define a fixpoint combinator that
would bring unrestricted recursion through the back-door.

no memory-allocated closuresNova functions can be nested so
that free occurrences of variables in an inner function refer
to their corresponding definitions in the outer scope. But no
two function values created by instantiating a single defini-
tion can ever be alive simultaneously in Nova programs, so
closures do not have to be memory-allocated.

flattening of records Our language has records and tuples with
fields of arbitrary types. Records are finite collections of la-
beled values, written by enclosing them in square brackets
(e.g., [x=4, y=3]), while tuples are sequences of values,
written by enclosing them in parentheses (e.g.,(4,3)). The
grouping of conceptually related values into larger values is
a useful organizing tool for the programmer, but it does not
have to be reflected in the runtime model. Our compiler han-
dles tuples and records by compile-time bookkeeping; only
leaf fields have a runtime counterpart, and each of them is
treated as an independent variable by the register allocator.

3.2 Layouts
The analysis of incoming and the construction of outgoing net-

work packets is at the heart of network processing. Therefore, Nova
programs perform many bit- or byte-level operations, i.e., masking
and shifting.

The instruction set of the IXP microengine provides adequate
support for dealing with these situations, but hand-crafting the nec-
essary code is tedious and error-prone. Moveover, even a small
update such as the insertion of a new field at the beginning of a
header typically means that any code using these low-level opera-
tions must be rewritten from scratch.

The Nova language automates the task of generating shift and
mask operations by providing a sublanguage for defininglayouts
that statically describe the arrangement of bitfields within a byte
stream. For every layoutl Nova defines two types:packed(l) and
unpacked(l). The former is a sufficiently long word tuple type de-
scribing raw, packed data with all bits in their correct positions.
The latter is a record type whose structure follows the structure of

l ’s definition where all bitfields have been spread out, each into its
own record component of typeword.

For example, the layout definition of the IPv6 header lists its
fields and makes use of another layout calledipv6 address:

layout ipv6_address =
{ a1 : 32, a2 : 32, a3 : 32, a4 : 32 };

layout ipv6_header = {
version : 4,
priority : 4,
flow_label : 24,
payload_length : 16,
next_header : 8,
hop_limit : 8,
src_address : ipv6_address,
dst_address : ipv6_address

};

Given this definition, the type namepacked(ipv6 header) is a syn-
onym forword[10] and we have the following type equalities:

type unpacked(ipv6_address) =
[a1: word, a2: word, a3: word, a4: word]

type unpacked(ipv6_header) =
[version : word,

priority : word,
flow_label : word,
payload_length : word,
next_header : word,
hop_limit : word,
src_address : unpacked(ipv6_address),
dst_address : unpacked(ipv6_address)]

On the operational side,packed(l) andunpacked(l) are connected
by operationsunpack[l](x) and pack[l](x). The unpack[l] oper-
ator maps a value of typepacked(l) to the corresponding value of
typeunpacked(l). For example, one could write something like:1

let pdata : packed(ipv6_header) = ...
let udata = unpack[ipv6_header](pdata);
if (udata.version == 6 && udata.hop_limit > 0)

...
else ...

Although formally every bitfield mentioned inl gets extracted by
unpack[l](x), no actual machine instructions will be generated for
those fields that are ignored by the rest of the program.

A formal definition for pack[l], which acts as the inverse of
unpack[l], is complicated by the possibility ofoverlayswithin lay-
outs. Overlays consist of two or more alternative sub-layouts, each
covering the same bit range. Unpacking generates all bitfields in
a given layout, including every possible alternative of each of its
overlays, but packing takes input corresponding to precisely one
alternative of each overlay.

As an example, consider the aforementioned IPv6 address lay-
out. In most programs it makes sense to considerversion and
priority fields together, forming a larger 8-bit field that is cheaper
to extract. A revised version of our layout could provide the two
competing views side-by-side in the form of an overlay:

1The let keyword binds a new variable. This construct can appear
at any point within{. . .}-enclosed blocks. The new binding is in
scope until the end of the block. One can add a type constraint
using the: notation as shown in the example.

layout ipv6_header = {
verpri : overlay {

whole : 8
| parts : { version: 4,

priority: 4 }
},

flow_label : 24,
...

}
...

let x = pack[ipv6_header]
[verpri = [whole = 0x60], ...]

let y = pack[ipv6_header]
[verpri = [parts = [version = 6,

priority = 0]], ...]

Layouts can be composed on the fly inlayout expressions. This can
be useful when several small variations of the same basic layout are
required. The following example assumes a 56-bit layoutlyt that
can appear at offsets 0, 16, or 24 within a 3-word (96 bit) tuple of
packed data. Sequential layouts can beconcatenatedusing the infix
operator## and the notation{n} specifies a small sequential layout
that consists of nothing more than an unnamedn-bit gap:

layout lyt = { x: 16, y: 32, z: 8 } // size = 56 bits
...

let udata = // pdata: word[3]
if (...) // alignment is 0

unpack[lyt ##{40}](pdata)
else if (...) // alignment is 16

unpack[{16}## lyt ##{24}](pdata)
else // alignment is 24

unpack[{24}## lyt ##{16}](pdata);
if (udata.x == 0x3456) ...

Notice that completely different instruction sequences must be gen-
erated for each of the three branches in order to correctly extract the
values of bit fields likeudata.x, but we are able to use the same
layout definitionlyt in each case.

3.3 Exposing Hardware Features
The IXP microengine instruction set is rather quirky, and Nova

tries to shield the programmer from much of that. But some fea-
tures are useful and we incorporated special syntax into Nova to
let the programmer have access to them. Examples include inter-
thread communication (on the same micro-engine, on different mi-
croengines on the same chip, or across chips), locking and unlock-
ing (mutual exclusion), concurrency control, access to FIFOs, a
number of special-purpose operations such as hashing, and access
to different kinds of memory.

3.4 No GOTO
Nova provides syntax for the usual set of “structured” control

constructs such asif-then-else or loops. However, it does not
provide a generalgoto construct that would let the programmer
specify arbitrary control flows. Nevertheless, most legitimate uses
of gotohave an alternative formulation in Nova in terms of function
calls and exceptions. The Nova compiler translates all tail-calls into
unconditional branches. In fact, the main difference between a tail
call and agoto is that the tail-call respects scoping discipline and
can pass arguments.

Programs running on an IXP microengine often implement no
more than thefast pathof a particular network protocol. As a result,
the program must detect all cases that cannot be handled on the
fast path. Once such a situation has occured, control should be
transferred to some error handler immediately. The error handler
could, for example, hand the current packet to the main CPU for
slow-path processing.

To express such behavior in Nova, it is convenient to make use
of thetry -handleconstruct. Example:

fun g [..., x1, x2] {
if (...) raise x2 ()
else if (...) raise x1 [b = ..., c = ...];
...

}
...
try { if (x.a == A1) { ...

raise X1 [b = ..., c = ...]
} else

g [..., x2 = X2, x1 = X1]
} handle X1 [b, c] { ... }

handle X2 () { ... }

Eachtry -handleblock introduces—in a lexically scoped manner—
the names of the exceptions (X1 andX2 in the example) that can
be used within. These blocks can be nested, and exception values
can be passed as arguments to function calls, thus enabling these
functions (such asg in the example) to directly jump back out to
the corresponding handler. Nova’s type system guarantees that no
computation that might raise an exceptione can escape thetry -
handle-block that handlese.

4. THE FRONT END
Nova programs can never become very big because generated

machine code has to fit within only a few thousand instruction
words. Therefore, our compiler can easily afford to do whole-
program analysis.

The front end of the compiler performs the usual lexical and syn-
tactic analyses, elaboration and type-checking, and then converts to
a continuation-passing styleintermediate representation (CPS). It
then further transforms the code intostatic single assignment(SSA)
form for temporaries and performs a host of CPS optimizations, de-
proceduralization, transformation to a newstatic single useform
for temporaries participating in memory output operations, and, fi-
nally, IXP instruction selection. The phases after instruction selec-
tion are considered part of the back end.

4.1 Continuation-Passing Style
Continuation-passing style [23, 2] has been criticized as overkill

in the case of a traditional stack-based implementation of languages
with recursive procedures. Indeed, CPS makes it somewhat harder
to determine which closures can be stack-allocated. On the other
hand, some of the desirable properties of CPS (e.g., the explicit
naming of all intermediate values) are shared with direct-style rep-
resentations such as A-Normal Form [13]. Other studies point to
heap-allocated continuation closures like those used by some ex-
isting CPS-based compilers such as SML/NJ [5] as being expen-
sive [7].

However, none of these problems matter in the case of Nova:
Nova does not have general recursion and its implementation is not
stack-based. Due to the restrictions that we placed on the source
language, closures do not require memory allocation and all free
variables can simply remain in registers. Alternatives to CPS such
as A-Normal Form do not capture control flow as concisely as does
CPS. While we do not claim CPS to be strictly superior to direct-
style representations, we still found it to be an excellent match for
the problem of compiling the Nova language.

Our CPS does not have aggregate types; all variables concep-
tually correspond to single machine registers. The CPS converter
takes advantage of information produced by the type checker and
flattens all records, representing each leaf field by its own CPS
variable. From that point on, each record field has its own inde-
pendent representation and is subject to subsequent optimizations

without regard of the conceptual relationship to other variables that
had been expressed by types in the source program.

The converter also tries—as long as it is cheap to do so—to en-
code boolean values as control flow. In particular, functions return-
ing a bool take two return continuations instead of one. This can
make life somewhat easier for the CPS optimizer.

4.2 Static Single Assignment
Soon after CPS conversion the compiler eliminates all assign-

ments to temporaries, effectively bringing the code into static sin-
gle assignment form (for temporaries) [9]. Luckily, CPS is already
powerful enough to express SSA directly without requiring addi-
tional constructs such asφ-nodes [18, 3].

As we will explain later (see Section 9), SSA is not only useful
when it comes to performing data flow analyses. In our compiler
its use guarantees an essential property: no variable will appear
as the target of two different memory read instructions, ruling out
the possibility of conflicting constraints that would make consistent
colorings impossible. Although in principle it is possible to handle
inconsistent colorings (i.e., the use of different colors at different
program points), the resulting ILP models turned out to have too
many variables and to cause solve times that are too long. The
simplification of the ILP model resulting from the ability to rely on
SSA is what makes our approach feasible.

4.3 De-proceduralization
The current prototype of our ILP-based back end cannot han-

dle general interprocedural bank- and register-assignment. As a
workaround we implemented a CPS phase that fully inlines all pro-
cedure calls in non-tail position.

4.4 CPS Optimization Phases
Our CPS optimizer is far from complete, but even now its out-

put is good. We have implemented constant folding, global con-
stant propagation, local value propagation, eta reduction, simple
hoisting of arithmetic operations, simple contractions (e.g., inlining
of called-once functions), useless variable elimination, dead code
elimination, and trimming of memory reads.

In particular, the combination of flattened records, dead code
elimination, and useless variable elimination makes programming
with records and tuples (especiallypack andunpack) inexpensive.
Consider the following example:

fun f (p1, p2) {
layout p = { a : 16, b : 32, c : 16 };
let u1 = unpack[p](p1);
let u2 = unpack[p](p2);
(if (u1.c > 10) u1 else u2).b

}

Our compiler will determine that fieldsu1.a, u2.a, andu2.c are
never used and that, therefore, their values do not even have to be
extracted.

4.5 Static Single Use
As mentioned in section 4.2, SSA form solves a potential color-

ing problem for temporaries defined by memory read operations. A
dual of the same problem arises for variables participating in mem-
ory write operations.

Therefore, just before going into instruction selection our com-
piler brings the program intostatic single use(SSU) form, a dual
of SSA form wherecloning plays the role of SSA’sφ-nodes. For
our purposes, static single use means that any use of a variablex
as an operand in a memory-write operation is theonly use of that
variable in the entire program.

model:
set T; set R; var x{T,R};
param cost{T}; ∀ . . . : ∑t∈...,r∈... . . .≥ . . .︸ ︷︷ ︸

��data:
set T= {t1 t2}
set R= {r1 r2 r3}
param cost= {(t1 3) (t2 4)}

 // AMPL //

 xt1,r1 +xt1,r2 +xt1,r3 ≥ 3
xt2,r1 +xt2,r2 +xt2,r3 ≥ 4
...


Figure 2: Modeling with AMPL. The input to AMPL consists of an abstract model and concrete data for that model. AMPL instantiates the model with the
data, generates the (integer-)linear program to be solved by some off-the-shelf solver, and finally interprets the solution in terms of the original model.

SSU form can be generated simply by making sufficiently many
copies of each variable. Since the program was in SSA form al-
ready, no variable will ever be written to after its creation, so origi-
nals and copies are guaranteed to be consistent.

We added a new primitive operationclone to the CPS language
and to the IXP machine description used by the back end of the
compiler. Cloning is semantically equivalent to copying. As we
describe later in more detail, the difference is in howclone oper-
ations are handled by the ILP model: variables that are clones of
each othermaybut do not necessarily have to beallocated to the
same register, so cloning does not always imply physical copying.
Minimizing the amount of such physical copying is part of the ILP
solver’s job, made possible by the idea that clones are copies that
do not interfere with each other.

The example on the left is rewritten to that on the right where
the variablex is cloned withy such that there is a single use of all
members of the cloned set.

x ← ··· x ← ···
y ← clone(x)

.
sram() ← x sram() ← y

.
← x ← x

5. ILP-BASED OPTIMIZATION
We model the problem of optimal bank-assignment and coloring

of aggregates as a 0-1 integer-linear program, i.e., an optimization
problem with constraints that are linear inequalities, a linear cost
function, and the additional constraint that every variable must take
the value 0 or 1. We use AMPL [14] to describe, generate, and
solve the linear program. The AMPL compiler derives an instance
of the optimization problem by instantiating a mathematical model
with data specific to the task being solved, and feeds the resulting
system to a standard off-the-shelf simplex solver.

The AMPL model consists of several variable-, set-, and parameter-
declarations, plus templates to generate the constraints for the lin-
ear program. Sets can simply be symbolic enumerations, or they
can be built up from other sets using constructive set operations.
Related ILP variables are grouped together and referred to using a
single name and a set that acts as an index range for that name. For
example, ifT andR are sets, then a declaration

var x {T,R};

introduces variablesxi, j wherei ranges overT andj overR. Figure 2
outlines an example of a model, data, and the generated system of
linear equations.

5.1 Overview
In what follows, we refer to program variables in the code to

be compiled astemporariesand reserve the wordvariable for the
description of the AMPL model.

For every instruction of the program we want to find an assign-
ment of temporaries to register banks. If a temporary is required
in different banks for adjacent instructionsi1 andi2, then an inter-
bank move has to be inserted at the point betweeni1 andi2. In our
model, there is a move for every live temporary at every point; if a
temporary remains in a bank, then source and destination banks of
the move are identical and its cost is zero.

A feasible solution is one that does not exceed any of the physical
resource limits of the IXP such as number of registers in a bank. An
optimal solution is one that has the lowest weighted cost of inter-
bank moves.

5.2 The Model
We develop the model in three phases: basic constraints to ex-

press operand requirements and resource bounds, colors and aggre-
gation of registers, and cloning. After we have covered the basics,
each later progression will require additional or somewhat modified
sets and constraints—which we will then introduceon-the-fly.
Variables: The setV is the set of temporaries in the program,P
denotes the set of program points within the flowgraph. Each in-
struction of the program’s original flowgraph is locatedbetween
two such points. A branch instruction is followed by a single point
that is connected to all points at the targets of the branch.

UsingP andV, we then define sets related to liveness properties
of the temporaries in the program. For anyv1 ∈ V that is live at
a point p1 ∈ P, we write(p1,v1) ∈ Exists . TheExists set is
similar to the live set but not identical: if an instruction between
points p1 and p2 produces a resultv that is immediately dead,
thenv is nowhere live but(p2,v) ∈ Exists . If a temporaryv1
is live and carried unchanged from pointp1 to p2, then we say that
(p1, p2,v1) ∈ Copy.

set Exists ⊆ P×V ;
set Copy ⊆ P×P×V ;

Our model starts with three sets of 0-1 variables:

Movep,v,b1,b2 has the value1 if the temporaryv needs to be moved
from bankb1 to bankb2 at the pointp; and is zero otherwise.

Beforep,v,b has the value1 if the temporaryv is in the bankb before
the pointp; and is zero otherwise.

Afterp,v,b has the value1 if the temporaryv is in the bankb after
the pointp; and is zero otherwise.

In AMPL these variables would be declared using:

•p1
let (a, b, c, d) = sram(100);

•p2
let (e, f, g, h, i, j) = sram(200);

•p3
let u = a + c;

•p4
let v = g + h;

•p5
sram(300)← (b, e, v, u);

•p6
sram(500)← (f, j, d, i);

•p7

set P := {p1 p2 . . . p7}
set V := {a b c d e f g h i j u v}
set DefL4 := {(p1,p2,a,b,c,d)}
set DefL6 := {(p2,p3,e,f,g,h,i,j)}
set DefABW := {(p3,p4,u) (p4,p5,v)}
set Arith := {(p3,p4,a,c) (p4,p5,g,h)}
set UseS4 := {(p5,p6,b,e,v,u) (p6,p7,f,j,d,i)}
set Exist := {(p2,a), (p2, b), ...

(p3,e), (p3, f), ...
(p4, u), ...

set Copy := {(p2,p3,a) (p2,p3,b) ...

Figure 3: Sample source code and AMPL data.AMPL set definitions on the right capture the essence of the bank- and register-allocation problem for the
program on the left.

set XBank := {L , LD , S, SD};
set GBank := {A, B, M};
set Banks := XBank ∪ GBank ;

var Move {Exists , Banks , Banks } binary;
var Before {Exists , Banks } binary;
var After {Exists , Banks } binary;

where the set declarations enumerate the transfer banks inXBank
and general purpose banks inGBank. The declaration forMove
defines a variable indexed over pointsp and temporariesv such
that (p,v) ∈ Exists , and a pair of banks representing the source
and destination banks.
Instruction operands: Like Appel and George [4], we charac-
terize instructions by the resources they require and define. For
example, the output of the ALU can either be anA/B register or
one of the write-side transfer registers. The operands can be taken
from any disjoint set of input banks. Thus an instruction of the
form x := y⊕ z between the pointsp1 and p2 will be modeled as
(p1, p2,x) ∈ DefABW, and(p1, p2,y,z) ∈ Arith , and constraints
on these sets will ensure that the necessary conditions for the in-
struction are met.

set DefABW ⊆ P×P×V
set Arith ⊆ P×P×V×V

In a similar manner we have a number of sets to characterize the
various operand- and destination constraints of other IXP instruc-
tions.

On the IXP, multiple memory locations can be read or written us-
ing a single instruction, and all the registers used in these operations
must be consecutive. The number of registers used in SDRAM
memory operations is always a multiple of two. We declare the
setsDefL i , UseSi : 1≤ i ≤ 8, andDefLD j , UseSDj : j ∈ 2,4,6,8
to associate the points before and after the instruction with the vari-
ables defined or consumed by it. For example:

set DefL i ⊆ P×P×
i︷ ︸︸ ︷

V×·· ·×V

Others: Our model uses several other sets that, for brevity, are not
shown in this extended abstract. The purpose of these sets is to deal
with, e.g., instructions that mutate an operand or situations where
it would be illegal to insert move instructions at certain program
points.
Example: Figure 3 shows a sample program and the AMPL data
generated for it. The first two lines read four and six SRAM mem-
ory locations from addresses100 and200; the last two lines, write
values to addresses300 and500 in SRAM. The AMP data declares

7 programs points and 12 variables;(p3,p4,u) is a member of
defABW since there is an arithmetic operation betweenp3 and p4,
and the destination of the instruction isu, etc.

6. CONSTRAINTS
Linear constraints deal with liveness, operand constraints, andK

constraints which guarantee that at no program point the number of
temporaries assigned to a bank exceeds the capacity of that bank.
Finally, there are constraints that bind together theredundant vari-
ables of the model. (Redundant variables are variables that exist
merely to make it easier to specify the model but whose values are
uniquely determined by the values of other variables.)
In-before and in-after: If at some pointp a temporaryv is moved
from some source bankb1 to some other bankb2 (even whenb1 =
b2), thenv must have existed inb1 beforep and it must exist inb2
after p. The constraints relateBeforeandAfter to Moves:

∀(p,v) ∈ Exists , ∀b∈ Banks :
Beforep,v,b = ∑d∈Banks Movep,v,b,d

∀(p,v) ∈ Exists , ∀b∈ Banks :
Afterp,v,b = ∑s∈Banks Movep,v,s,b

In one place only: We place the restriction that if a temporary
exists at a point it must exist in precisely one bank. Therefore, the
sum over all banks must be one. This constraint must be relaxed
when cloning is involved, however fornon-cloned variables, the in-
one-place assumption simplifies the modelling, and does not appear
to impact optimality in practise:

∀(p,v) ∈ Exists : ∑
b∈Banks

Beforep,v,b = 1

Copy propagation: If a temporary is copied unchanged between
p1 andp2, then its location afterp1 must be the same as its location
beforep2: This constraint propagates liveness information and is
expressed as:

∀(p1, p2,v) ∈ Copy, ∀b∈ Banks : Afterp1,v,b = Beforep2,v,b

Operand definition: Sets likeDefABWdescribe results of instruc-
tions with more than one possible destination bank. Here, the des-
tination may be in theA, B, S, or SD bank just before the point
following the instruction. Since an operand can only be in one
bank at a time, the corresponding summations must equal one.

∀(p1, p2,v) ∈ DefABW:
Beforep2,v,A + Beforep2,v,B +

Beforep2,v,S + Beforep2,v,SD = 1

Arithmetic: If x andy are involved in an ALU operation, then they
must come from one of the input register banksA, B, L , or LD :

∀(p1, p2,x,y) ∈ Arith : ∑b∈{A,B,L ,LD}Afterp1,x,b = 1
∀(p1, p2,x,y) ∈ Arith : ∑b∈{A,B,L ,LD}Afterp1,y,b = 1

However,x andy cannot be in the same register bank:

∀(p1, p2,x,y) ∈ Arith ,b∈ {A,B,L ,LD} :
Afterp1,x,b +Afterp1,y,b ≤ 1

Furthermore, if one of the operands is in a transfer bank, then the
other operand cannot be in a transfer bank:

∀(p1, p2,x,y) ∈ Arith : Afterp1,x,L + Afterp1,y,LD ≤ 1
∀(p1, p2,x,y) ∈ Arith : Afterp1,x,LD + Afterp1,y,L ≤ 1

Aggregate definition and use:The aggregate definition and use
constraints such asDefL i andUseSi are similar; the constraints
merely cycle through the variables involved in the aggregate, spec-
ifying where they should exist. We only show the casei = 4:
∀(p1, p2,v1,v2,v3,v4) ∈ DefL4 ,
∀i ∈ 1..4 : Beforep2,vi ,L = 1

∀(p1, p2,v1,v2,v3,v4) ∈ UseS4,
∀i ∈ 1..4 : Afterp1,vi ,L = 1

K and Spilling for A/B: The ILP model does not pick colors
for temporaries inA/B banks; this is left to a subsequent color-
ing phase. To prevent that phase from having to insert additional
inter-bank moves or spills, the model makes sure that no more than
16 A/B registers are needed at any time. We leave room for one
extra register inA to be able to implement cycles in parallel copies
that might be needed during optimistic coalescing [4]. TheK con-
straints are needed both before and after each point; for brevity we
only show the former kind:

∀p∈ P : ∑(p,v)∈Exists Beforep,v,A ≤ 15

∀p∈ P : ∑(p,v)∈Exists Beforep,v,B ≤ 16

TheK constraints for transfer banks is deferred to Section 9.

7. OBJECTIVE FUNCTION
The objective is to minimize the weighted cost of moves. For

each point we compute a static frequency estimation based on loop
nesting and branch probabilities using the Dempster-Shaffer theory
to combine probabilities. (Our own variation of the Wu-Larus fre-
quency estimation [25] can cope with irreducible flowgraphs.) The
objective function uses the following parameters:

param weight{P}; /* execution freq */
param mvC := 1; /* move cost */
param ldC := 200; /* load cost */
param stC := 200; /* store cost */
param bias := 1.01;

mvC is the cost of a register-register move, andstC andldC are the
cost of accessing spill memory.

If Movep,v,A,M = 1, then the move fromA to M will be im-
plemented as a register-register move fromA → S, followed by
a (S→M). This is reflected in the objective function by using the
term (mvC+ stC) ·Movep,v,A,M . (We also added a small bias to-
wards usingA registers overB registers since we found that this

speeds up the ILP solver.) Here is the portion of the objective func-
tion that is related to moves fromA andB.

∑(p,v)∈Exists (
/∗ from A bank ∗/

weight p ·mvC·∑b∈{B,S,SD}Movep,v,A,b
+ weight p · (mvC+stC) ·Movep,v,A,M
+ weight p · (mvC+stC + ldC) ·Movep,v,A,L

/∗ from B bank ∗/
+ bias ·weight p ·mvC·∑b∈{A,S,SD} ·Movep,v,B,b
+ · · ·)

8. A MILLION VARIABLES
The above description of the model was a simplification. In prac-

tice, if defined this way, problem sizes grow too large and cannot
be solved with reasonable resources. Since there are 7 banks, the
number ofMovevariables for each temporary at each point is 72.
Since there are 64 available registers, we could theoretically have
that many live temporaries at every program point. Even if we as-
sumed just an average of 20 live variables at every point and a full
instruction cache of 1000 instructions, then we would have approx-
imately one millionMovevariables (72 ·20·1000), not to mention
Before, After, and so on.

To reduce the number of variables we perform a static analysis on
the use of temporaries. For example, if a temporary is loaded from
SRAM memory and is never stored back anywhere, then there is no
reason for it to ever be inS, SD, or LD . We will therefore rule out
all transitions to and from these banks. Of course, if the temporary
is spilled, then it will have to make a brief appearance inS. Ruling
out these banks implies that spilling will move the temporary either
from {L , A, B} directly toM , and reloading will move fromM di-
rectly to{L , A, B}. Since spilling occurs very rarely, these restric-
tions, which result in dramatically smaller optimization problems,
are not a problem in practise.

9. AGGREGATES AND COLORING
In the work of Appel and George the program generated from the

results of integer-linear programming satisfied theK constraints,
and subsequent coloring phases were used to assign registers using
a variation of the Park and Moon [20] optimistic coalescing. We use
the same approach for theA andB bank, but for transfer registers
this is not possible because of aggregation.

In the example shown in Figure 3, two temporaries from the first
read must be moved out of the transfer bank to make room for the
next read. If a näıve “optimal” solution to the coloring problem
does this in a manner resulting in fragmentation of the bank, then
the second read cannot be performed even though aK -constraint
was satisfied.

Our approach is to let the ILP solver derive a coloring of ag-
gregates directly in conjunction with the bank assignment problem.
For this we added the following declarations to the model:

set XRegs := 0..7;
var Color {V, XBank, XRegs} binary;

XRegs is an enumeration of register numbers,Colorv,b,r = 1 if
wheneverv is in the transfer bankb, then it is in the registerr of
that transfer bank. There are a couple of important properties of
the Color variable that are in the spirit of Fu and Wilken[15], in
that the number of variables and constraints are manageable, (but
optimality, in our case, may be compromized):

1. Color is point-independent: whenever a variable is in a spe-
cific bank, it will always reside in the same registers (even

after spilling/reloading).

2. The objective function is color-independent.

3. In general, if the flowgraph were not in static single assign-
ment, the problem could become unsolvable. Consider a pro-
gram:

(a,b,X,Y) ← sram(. . .)
(Y,X,u,v) ← sram(. . .)

In the first read operationY must be in a higher numbered
register thanX, the opposite is true for the second operation,
so there is no feasible solution. But programs like this are
not in SSA form, and cannot occur.

4. The analogous problem on the write-side is avoided by the
use of static single use form (Section 10). Assuming a bank
of size four, without static single use form, there would be no
solution for:

sram(. . .) ← (X, a, b, c);
sram(. . .) ← (a, b, c, X);

For continuity we express the constraints below using∀(p,v) ∈
Existsand do not burden the reader with narrowing this down as
described in Section 8.
Color: There are three constraints related to colors. A color must
exist for a temporary that can live in a transfer bank:

∀v∈ V b∈ XBank : ∑r∈XRegs Colorv,b,r = 1

If two interfering temporaries are simultaneously live in a transfer
bank, then they must not have the same color. Our model lists inter-
ferences explicitly in a setInterferes ⊆ V×V because (due to
cloning—see Section 10) it is not always true that two temporaries
interfere just because they are both live at the same time:

∀(p,v1),(p,v2) ∈ Exists ,(v1,v2) ∈ Interferes
∀b∈ XBank ∀r ∈ XRegs :

Beforep,v1,b +Beforep,v2,b +Colorv1,b,r +Colorv2,b,r ≤ 3

An analogous constraint covers theAfter case.
Aggregation: The bulk of the constraints in our system have to
do with aggregation, and they are all fairly simple and similar in
nature. Adjacency is expressed pairwise:

∀(p1, p2, . . . ,vk,vk+1, . . .) ∈ DefL i ∀r ≤ 7− i +k :
Colorvk,L ,r = Colorvk+1,L ,r+1

We found that adding a redundant set of constraints that immedi-
ately rules out a number of impossible allocations for an aggregate
speeds up the solver. For example, the first temporary in an aggre-
gate of three cannot possibly have colors 6 or 7.
Same register: Some instructions use one register number to re-
fer to two different registers in two different banks. When coloring
the corresponding temporaries we must make sure that they end up
having the same color. Consider:

dst ← hash(src)
dst ← (sram[addr=ea,bit_test_set] ← src)

In the first linedst gets the hash ofsrc, and in the second the
memory at effective addressea is modified bysrc, and the old
value returned indst. Each of these operations correspond to in-
structions on the IXP, and in each casedst andsrc have the same
register number but are in different transfer banks. We use a set

p6

p1

p2

p3 p4

<− x p5

p0

sdram(...) <− z

sram(...) <− y

x y z

x y z

z

x, y = clone(z)

Figure 4: An example of cloning. x has clonesy andz. All three start
out at the same location but eventually have to split up to satisfy other con-
straints.

SameRegwhose members are pairs of temporaries together with
the two points just before and after the instruction in question.

set SameReg ⊆ P×P×V×V

∀(p1, p2,d,s) ∈ SameReg ∀r ∈ XRegs :
Colord,L ,r = Colors,S,r

K and Spilling for transfer banks: We do not needK constraints
for LD or SD because the fact that a color must be picked for each
occupant of the bank effectively limits their number. Even though
the model also colorsL andS, the situation here is slightly differ-
ent because we sometimes need an extra register for implementing
spills. To handle this, we added a set of 0-1 variablescolorAvailp,b,r
for b∈ {L ,S} which indicate whether or not at pointp one could
allocate some variable to registerr in b:

∀v : Colorv,b,r +Beforep,v,b ≤ 1+colorAvailp,b,r

TheK constraint forL andS then becomes

∑
r∈XRegs

colorAvailp,b,r = 8−needsSpillp,b

whereneedsSpillp,b indicates that spilling requires a spare register
in bankb at pointp. needsSpillp,b itself is constrained by inequali-
ties of the form

needsSpillp,b ≥Movep,v,b1,b2

needsSpillp,b ≤ ∑b1,b2:... Movep,v,b1,b2

for all relevant combinations ofb1 andb2. We found that the second
constraint (which is not necessary for correctness) improves solve
times by tightening the model somewhat:

10. THE ROLE OF STATIC SINGLE USE
In Figure 4,x has clonesy and z. All of them eventually get

used in different contexts. Immediately after aclone instruction,
the original and all its clones are still in the same register. For
our model this means that they are in the same bankb and, if
b is a transfer bank, theirb-colors are the same. The members

(p1, p2,d,s) of theClone set indicate that a clone instruction ex-
ists betweenp1 and p2, cloning the sources resulting ind. With
this we can write:

∀(p1, p2,d,s) ∈ Clone : Beforep2,d,b = Afterp1,s,b

∀(p1, p2,d,s) ∈ Clone , r1 6= r2,b∈ XBank :
Colord,b,r1 +Colors,b,r2 ≤ 2−Beforep2,d,b

Other than at the point of cloning itself, there is no requirement for
cloned temporaries to exist in the same bank or the same register.
In our example (Figure 4) all three variables eventually must—and
will—move to different banks to satisfy other constraints. In par-
ticular,z could get moved to its final destination even beforep5 so
thaty andz exist in different banks simultaneously at that point (y
in Sandz in SD). But y andz represent the same program variable,
so the cloning device effectively allows for such a program variable
to be in more than one place at the same time.

We need to make the following adjustments in our model to ac-
count for the possibility of cloning:

• When coloring, we require different colors for live tempo-
raries thatinterferewith one another. By definition, tempo-
raries that are each other’s clones do not interfere.

• In K constraints forA/B we should count only one represen-
tative for each set of mutual clones that is in the respective
bank. For example, ifx, y andz are all inA at p2, then they
will all be in the same register.

• In the objective function we should count as one any col-
lection of moves that involve members of the same clone set,
moving them from identical sources to identical destinations.

We take care of the first point by guaranteeing that wheneverx
andy are clones of one another, then neither(x,y)∈ Interferes
nor (y,x) ∈ Interferes .

The other two points require a different way of counting. For this
we define three new sets of 0-1 variables referred to ascloneBefore,
cloneAfter, andcloneMoveand include constraints that tie them to
Before, After, andMoveas follows:

First we look at each program pointp and consider the sets
{x1, . . . ,xn} of temporaries that are clones of each other and live
at p. From{x1, . . . ,xn} we pick arepresentative xr for the pointp
and require thatcloneBeforep,xr ,b = 1 if and only if there is at least
onex∈ {x1, . . . ,xn} so thatBeforep,x,b = 1. This can be expressed
roughly as follows:

∀x∈ {x1, . . . ,xn} : cloneBeforep,xr ,b ≥ Beforep,x,b

cloneBeforep,xr ,b ≤ ∑x∈{x1,...,xn}Beforep,x,b

The same definition,mutatis mutandis, works for cloneAfterand
also forcloneMove.

With this, K constraints can be adjusted to look atcloneBefore
andcloneAfterinstead ofBeforeor After when dealing with clones.
A similar change is done in the objective function usingcloneMove.

In the example (see Figure 4) we havex to be the representative
for x, y, andz betweenp1 andp2. Later on, betweenp4 andp5, x
is not live any more, so a different representative gets used there.

11. RESULTS
Network processors are so new that a set of standard benchmarks

does not exist. We have exercised our compiler on a large number
of problems, however three programs stand out both in size and in
real-world relevance.

AES Rijndael: implements the NIST standard for encryption based
on Rijndael [10, 11]. Our implementation has the following
variation from the fast C reference implementation available
from http://www.nist.gov.

• We keep the encryption state in registers at all times,
sometimes exploding 4 registers holding the state into
16 registers containing the individual bytes.

• The ethernet, IP, and TCP headers are shifted before en-
cryption so that plaintext is read potentially quad-word
misaligned, but the ciphertext is written out quad-word
aligned.

• The code maintains the TCP checksum field.

• All tables reside in SRAM memory, resulting in con-
tention; we did not investigate distributing the tables
over the different memory banks.

• The key expansion was statically computed.

• We did not implement CBC, so the data size must be a
multiple of 16 bytes.

Kasumi: implements the Kasumi encryption algorithm[1] used in
the ETSI 3GPP standard. Like Rijndael, this implementation
shifts headers, statically computes the subkey expansion, and
maintains the TCP checksum. All tables are stored in scratch
memory, except the S9 table, which is stored in SRAM mem-
ory. By interleaving and packing all the subkey tables, each
iteration performs one scratch read to access all the 16 sub-
key elements.

IPv6-IPv4 NAT This program implements network address trans-
lation (NAT) between IPv6 and IPv4 headers [17]. Because
of the different header sizes, the start of the packet must be
moved to a new location and care is required in updating the
new checksum field.

In all cases the code for the application must be compiled with code
that synchronizes with the receive scheduler, reads in the packet
from the receive FIFOs to SDRAM memory, synchronizes with
the transmit scheduler, and contains the logic to invoke the worker
thread.

Figure 5 summarizes the characteristics of these programs. Line
counts are those reported bywc and includes whitespaces and com-
ments. The numbers for NAT are those for an older (and now obso-
lete) version of Nova that was lower-level and did not have layouts.

Figure 6 shows the part of the AMPL statistics related to the
number of variables that participate in coloring. All the variables
mentioned inDefLi were added up and included in the first col-
umn. The table shows that the model has to deal with a fair deal of
coloring.

Next we show the time it takes to solve the root relaxation (op-
timal linear solution), the time it takes to find the optimal integer
solution (within 0.01% of optimal), the size of the optimization
problem, and the number of inter-bank moves and spills. The num-
bers are in Figure 7; there are too few data points at the present
time to plot a trend, but our experimentation gives reason to be op-
timistic about solve times. All numbers are for CPLEX [8] on an
800MHz dual pentium-III processor, 2Gbyte, Linux machine.

We have experimented with another objective function that lets
us determine whether spills are required at all, and if so, where.
Once this has been determined many of the variables and con-
straints involving memory can be eliminated, resulting in a much
smaller linear program. We have not found it necessary to follow
this route (which gave solve times of 9 seconds for AES and 19.2

Line count Layouts Exceptions
Nova instructions specs pack unpack raise handle

AES 541 588 7 8 5 3 1
Kasumi 587 538 7 7 4 2 2
NAT 839 740 - - - - -

Figure 5: Static benchmark program statistics

DefLi DefLDj Total UseSi UseSDj Total
AES 68 16 84 4 10 14
Kasumi 44 14 58 4 14 18
NAT 43 22 65 8 60 64

Figure 6: AMPL statistics

Solve Time (sec) Variables Constraints Terms in Objective Solution
Root Integer ×1000 ×1000 ×1000 Moves Spills

AES 30.4 35.9 108 102 37 25 0
Kasumi 48.2 59.2 138 131 50 20 0
NAT 69.2 155.6 208 203 72 60 0

Figure 7: Solver statistics

seconds for NAT), and a detailed description is beyond the scope
of this paper.

Lastly we have exercised the output of our compiler on real in-
house hardware [22] consisting of a 233 MHz IXP1200 with data
from a hardware packet generator. For Rijndael we measured 270Mbs
for payloads of 16 bytes, and 320, 210, and 60 Mbs for 8, 16, and
256 byte payloads using Kasumi. None of these programs were
written to be highly optimized for bit-rate processing speeds.

12. FUTURE WORK / OPEN PROBLEMS
There are many opportunities to improve the current design and

implementation and more open research questions to address:

newer IXP chips Our project focused on the IXP1200. While most
of the ideas will carry over to more recent versions of the IXP
hardware, there are also a number of new features (e.g., near-
est neighbor registers, and signals) that need to be addressed.

multithreading Nova provides a key piece of the puzzle, however
a complete solution must address the issues ofco-operative
multithreading among micro-engines, threads, and host pro-
cessor.

module systemThe addition of a module system together with a
more powerful type system (e.g., one that lets the program-
mer create new abstract types) will become more important
as programmers begin to collect larger utility libraries of IXP
code.

re-materialization A compiler with aggressive constant folding
and propagation such as ours tends to create intermediate
code with many residual constants. Loading a constant is not
without cost: on the IXP it takes 1 or 2 instructions, depend-
ing on the value. To avoid wasting cycles this way one can
keep frequently used constants in registers. But this can be
costly, too, because it will increase register pressure. Thus,
the problem of loading constants should be solved by the reg-
ister allocator, and a simple trick makes this straightforward.

We treat every individual constant as a temporary and invent
a virtual register bankC. C has unlimited capacity and can
hold constants (but nothing else). A move toC represents the
operation of discarding a constant from a physical register; it
has zero cost. A move fromC represents the load operation
of the corresponding constant; its cost depends on the value
of the constant (which is statically known). This scheme can
be further refined by paying attention to pairs(c1,c2) of con-
stants where calculatingc2 from c1 is cheaper than loading
c2 from scratch. (We have an AMPL model that takes all this
into account, but we did not find the time to complete the rest
of our compiler infrastructure to take advantage of it.)

global register allocation Our compiler fully inlines all procedure
calls, and Nova was designed for this to always be possible.
However, excessive inlining can easily cause code explosion.
A better compilation scheme would be to compile to a run-
time model that permits genuine procedure calls. But on the
IXP1200 we cannot afford to use a stack. The challenge is
then to find an ILP formulation of register allocation that de-
rives globally optimal calling conventions and callee-save as-
signments for every procedure [6].

13. CONCLUSIONS
Unconventional architectures with compilation problems that do

not have good heuristic solutions require unconventional compila-
tion techniques. Our results indicate that 0-1 integer linear pro-
grams can provide an excellent solution for an architecture such as
the Intel IXP. Our ILP formulation addresses three open problems
without good known heuristics: bank assignment, coloring of ag-
gregates in conjunction with bank assignment, and the management
of variables in multiple locations.

The formulation of our model turns out to be straightforward.
Although not optimal in the strict sense, we have evidence to be-
lieve that the solutions are very good. Finding a correct mathemat-
ical model is relatively easy, but we found that engineering such a
model to reduce the number of redundant variables and constraints
is extremely important. Making the right set of assumptions to limit

the number of variables and constraints is critical—as illustrated by
the color- and clone-related variables.

More experimental results are required to evaluate the perfor-
mance of the model for problems generated by the compiler. But
since the model is similar in flavor to that used by Appel and George
(where they show that solve times for over 600 flowgraphs, some
having thousands of instructions, were always within 30 sec), we
can be cautiously optimistic. Our situation is more complex be-
cause we deal with a considerably more difficult problem. On the
positive side, though, we know that IXP programs cannot grow
much bigger than the ones we tried successfully.

Our programming language provides the tools for writing robust
and maintainable programs, especially when comparing it with the
current state of the art: assembler or Intel’s C compiler for the IXP.
Tuples, layouts, loops, functions and exceptions appear to provide
the right balance of expressiveness and efficiency. CPS turned out
to be a great intermediate representation for the kind of language
that does not require memory-allocated closures.

14. ACKNOWLEDGEMENTS
We thankSatish Chandra for one of the earlier Nova front ends;

John Reppy for the control flow graph frequency estimation and as
one of the initiators of the Nova project;David Gay for help with
AMPL and solvers;Ron Sharp andMike Coss for comments and
help with the IXP architecture, simulator, and Tadpole board[22];
andAndrew Appel, Cliff Young, and the anonymous referees for
comments on an earlier draft.

15. REFERENCES
[1] 3GPP. Specification of the 3GPP confidentiality and integrity

algorithms. Version 1.2, Sept. 2000.
[2] A. W. Appel. Compiling with Continuations. Cambridge

University Press, Cambridge, England, 1992.
[3] A. W. Appel. SSA is functional programming.ACM

SIGPLAN Notices, 33(4):17–20, April 1998.
[4] A. W. Appel and L. George. Optimal spilling for CISC

machines with few registers. InSIGPLAN Conference on
Programming Language Design and Implementation, pages
243–253, 2001.

[5] A. W. Appel and D. B. MacQueen. A Standard ML compiler.
In G. Kahn, editor,Functional Programming Languages and
Computer Architecture (LNCS 274), pages 301–24, New
York, 1987. Springer-Verlag.

[6] U. Boquist. Interprocedural register allocation for lazy
functional languages. InProceedings of the 1995 Conference
on Functional Programming Languages and Computer
Architecture (FPCA), La Jolla, California, USA, June 1995.

[7] W. D. Clinger, A. Hartheimer, and E. Ost. Implementation
strategies for first-class continuations.Higher-Order and
Symbolic Computation, 12(1):7–45, 1999.

[8] CPLEX mixed integer solver. www.cplex.com, 2000.
[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph.ACM Trans. Prog.
Lang. Syst., 13(4):451–490, October 1991.

[10] J. Daemen and V. Rijmen.The block cipher rijndael, pages
288–296. LNCS 1820. Springer-Verlag, 2000.
J.-J.Quisquater and B.Schneier, Eds.

[11] J. Daemen and V. Rijmen. Rijndael, the advanced encryption
standard.Dr. Dobb’s journal, 26(3):137–139, March 2001.

[12] J. R. Ellis.Bulldog: A compiler for VLIW architectures. The
MIT Press, 1986.

[13] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. InProceedings of
the ACM SIGPLAN ’93 Conference on Programming
Language Design and Implementation, pages 237–247, New
York, 1993. ACM Press.

[14] R. Fourer, D. M. Gay, and B. W. Kernighan.AMPL: A
Modeling Language for Mathematical Programming.
Scientific Press, South San Francisco, CA, 1993.

[15] C. Fu and K. Wilken. A faster optimal register allocator. In
The 35th Annual IEEE/ACM International Symp. on
Microarchitecture. IEEE/ACM, November 2002.

[16] L. George and A. W. Appel. Iterated register coalescing.
ACM transacations on programming languages and
systems., 18(3):300–324, May 1996.

[17] E. Grosse and Lakshman Y. N. Network processors applied
to IPv4/IPv6 transition. Bell Labs Report.

[18] R. A. Kelsey. A correspondence between continuation
passing style and static single assignment form. In
Proceedings ACM SIGPLAN Workshop on Intermediate
Representations, volume 30, pages 13–22. ACM Press, Mar.
1995.

[19] T. Kong and K. D. Wilken. Precise register allocation for
irregular architectures. In31st International
Microarchitecture Conference. ACM, December 1998.

[20] J. Park and S.-M. Moon. Optimistic register coalescing. In
Proceedings of the 1998 International Conference on
Parallel Architecture and Compilation Techniques, pages
196–204, 1998.

[21] B. Scholz and E. Eckstein. Register allocation for irregular
architectures. InLCTES/SCOPES. ACM, June 2002.

[22] R. Sharp, M. Blott, M. Coss, B. Ellis, D. Majette, and
V. Purohit. Starburst: Building next-generation internet
devices.Bell Labs Technical Journal, 6(2):6–17, 2001.

[23] C. Strachey and C. Wadsworth. Continuations: A
mathematical semantics which can deal with full jumps.
Technical Monograph PRG-11, Programming Research
Group, Oxford University, 1974.

[24] S. Tallam and R. Gupta. Bitwidth aware global register
allocation. In30th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
85–96. ACM, January 2003.

[25] Y. Wu and J. R. Larus. Static branch frequency and program
profile analysis. In27th IEEE/ACM Inter’l Symp. on
microarchitecture (MICRO-27). IEEE/ACM, Nov. 1994.

