
Restricted Tasking Models

A. Burns and A.J. Wellings
Real-Time Systems Research Group

Department of Computer Science
University of York, UK

Abstract

High-integrity systems rarely make use of high-level lan-
guage features such as Ada tasking. In this paper, simple
language profiles (of Ada 95 concurrency features) are de-
veloped that are appropriate for various levels of integrity.
A level-0 model (collection of Ada95 features) defines a
minimal language profile and delivers deterministic (non-
preemptive) behaviour. Scheduling is undertaken as part
of the application and can thus be inspected and verified.
Five other models are also presented that give different lev-
els of expressive power. The motivation for this paper is to
try and define models that would become de facto standards
and that would be directly supported by kernel vendors and
other tool suppliers.

1. Introduction

The Ada95 language revision has both increased the
complexity of the tasking features and provided the means
by which subsets (or profiles) of these features can be de-
fined. To all of the Ada83 features (dynamic task creation,
rendezvous, abort) has been added protected objects, ATC
(asynchronous transfer of control), task attributes, finalisa-
tion, requeue, dynamic priorities and various low-level syn-
chronisation mechanisms. Subsets are facilitated by pragma
Restrictions that allows various aspects of the lan-
guage to be limited in scope or removed from the program-
mer completely. The purpose of this paper is to define a
number of language models (sets of language features) that
form natural abstractions, and to determine the extent to
which pragma Restrictions allows these models to be
articulated.

Whilst the full language produces an extensive collection
of programming aids, from which higher-level abstractions
can be constructed [2], there are a number of motivations
for defining restricted models:

� increasing efficiency by removing features with high

overheads

� reduce non-determinancy for safety-critical applica-
tions

� simplify run-time kernel for high-integrity applications

� remove features that lack a formal underpinning

� remove features that inhibit effective timing analysis

Of course the necessary restrictions are not confined to
the tasking model – but this paper only considers concur-
rency.

The different motivations for producing language sub-
sets, plus the number of different features supported by the
language could, theoretically, give rise to a large number
of models. Fortunately, many of the motivations lead to
similar language models, and certain features are naturally
coupled. Hence it is possible to define a relatively small set
of models. It is also important to distinguish between those
models that lead to simplification of the kernel and those
that merely reduce the semantic complexity of features and
programs.

If the Real-Time Workshop could endorse such a set then
this would have a major impact on vendors and could lead to
the development of tailored kernels. Indeed, the experiences
of vendors in implementing the full tasking model will be
invaluable in defining the different models.

Whilst some models will be strict subsets of others, it is
not appropriate to see all the models as fitting into a strict
hierarchy. Nevertheless, this paper is organised so that the
simplest models are presented first. In all six models are
presented:

� Level-0 Model

� Time Triggered Model

� Event Triggered Model

� Synchronous Communication Model

� Full Language Model

1

� Two-Level Model

The aim of this paper is, however, to initiate a discussion at
at the workshop.

2. Level-0 Model

Class A (or Class 1) software (as defined in safety stan-
dards such as DO-178B [4]) typically has a very restricted
architecture. We shall assume that only periodic behaviours
need to be supported. In order to reduce non-determinism
and to increase the effectiveness of testing, non-preemptive,
non-interruptible execution is required. Although non-
preemption can reduce schedulability, it can be analysed
and there are ways of improving its effectiveness.

The basic Level-0 model requires there to be a fixed set
of tasks; when each task completes its non-preemptive exe-
cution, it suspends itself and thereby allows an application-
level scheduling task to execute. This task picks out the next
application task to run and resumes it. If no tasks are ready
to execute, it busy-waits reading the system clock.

Although this is a very static approach, it has a number of
advantages over the conventional use of a cyclic executive.
The primary advantage is that it allows unrelated iteration
rates for the tasks to be supported. It also provides a simple
means of increasing schedulability by moving to coopera-
tive scheduling (see section 2.2).

2.1. Language Features Employed

The Level-0 model uses the following features:

� library-level non-hierarchical tasks

� a static number of tasks

� the real-time clock defined in the Real Time Systems
Annex – type Time Span and Clock function

� pragma Volatile to ensure that shared data is used
correctly

� necessary restrictions on sequential code to enable the
prediction of worst-case execution times to be made
(this is a general timing issue and will not be discussed
further here)

It follows that protected objects, rendezvous, select state-
ments, abort and ATC statements, delay and delay until
statements and interrupts are not included in this profile.

Note that this very minimal set of features are outside the
remit of the Real Time Systems Annex. However the added
restrictions introduced by the Safety and Security Annex do
give the necessary coverage:

No_Task_Hierarchy
No_Nested_Finalization
No_Abort_Statements
No_Termination_Alternatives
No_Task_Allocators
No_Implicit_Heap_Allocation
No_Dynamic_Priorities

Max_Select_Alternatives = 0
Max_Task_Entries = 0
Max_Protected_Entries = 0
Max_Storage_At_Blocking = ...

-- (some appropriate value)
Max_Asynchronous_Select_Nesting = 0
Max_Tasks = ... -- (a statically known value)

No_Protected_Types
No_Delay

Necessary scheduling is undertaken as part of the appli-
cation code. Hence the run-time support needed is mini-
mal: that necessary to support simple tasks (threads) and
suspension. In particular, the ability for a task to sus-
pend itself and for the application’s scheduler (task) to re-
sume others. This functionality could be obtained through
the use of the following features defined in the Real-
Time Systems Annex: Asynchronous Task Control
or Synchronous Task Control. For example with
Asynchronous Task Control, the following struc-
ture could be used. First some global arrays:

with Ada.Task_Identification;
use Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Scheduling_Data is

N : constant := ... -- static number of tasks
type Application_Ids is range 1..N;
Next_Release : array(Application_Ids) of Time;
-- holds time of next release of each task

pragma Volatile_Components(Next_Release);
Clients : array(Application_Ids) of Task_Id;
pragma Volatile_Components(Clients);

end Scheduling_Data;

Each application task would take the following form:

with Scheduling_Data;
package Activity_One is

pragma Elaborate_Body(Activity_One);
Name : Scheduling_Data.Application_Ids := 2;

-- for example
end Activity_One;

with System;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Task_Identification;
use Ada.Task_Identification;
with Ada.Asynchronous_Task_Control;
use Ada.Asynchronous_Task_Control;
package body Activity_One is

use Scheduling_Data;
task The_Task is
pragma Priority(System.Default_Priority);

end The_Task;

2

task body The_Task is
Period : Time_Span := Milliseconds(30);
Self : Task_Id;

begin
Self := Current_Task;
Clients(Name) := Self;
Next_Release(Name) := Clock + Period;
loop
Hold(Self);
-- code of the task
Next_Release(Name) := Next_Release(Name)

+ Period;
end loop;

end The_Task;

end Activity_One;

Obviously each task must be given a unique place in the
Next Release array. The language’s notion of priority
is not used for scheduling the application tasks and so they
can all be given the same priority. Indeed, at most one such
task will ever be able to execute at any specific time.

The scheduler would therefore have the following form:

with System;
package Scheduler is
task Sched is

pragma Priority(System.Default_Priority-1);
-- priority less than
-- the application tasks

end Sched;
end Scheduler;

with Scheduling_Data; use Scheduling_Data;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Task_Identification;
use Ada.Task_Identification;
with Ada.Asynchronous_Task_Control;
use Ada.Asynchronous_Task_Control;
package body Scheduler is
task body Sched is

Now : Time;
begin
loop
Now := Clock;
for Id in Application_Ids loop
if Next_Release(Id) <= Now then
Continue(Clients(Id));
exit;

end if;
end loop;

end loop;
end Sched;

end Scheduler;

With no further kernel support, simple sporadic (event trig-
gered) tasks can be accommodated. To protect against task
overrun, an interface to a watchdog (interval) timer may be
needed.

2.2. Cooperative Scheduling

One of the drawbacks to non-preemptive scheduling is
the resulting reduction in schedulability. If a low priority

task has a long execution then higher priority tasks will
be blocked for this time before they can even start execu-
tion. With the level-0 model this problem can easily be ad-
dressed. If during the execution of its code a task does a
speculative ‘hold’ i.e.

loop
-- part A of the task
Hold(Self);
-- part B of the task
Hold(Self);
-- part C of the task
Hold(Self);
-- part D of the task
Next_Release(Name) := Next_Release(Name)

+ Period;
Hold(Self);

end loop;

then the scheduler will be invoked at each call of Hold. If
a higher priority task should now run (as its ‘time’ is due)
then a task switch will occur. Alternatively, if this is not
the case then the scheduler will resume the same task (as
its Next Release time is still in the past). The addition
of ‘hold’ points can be done after the code has been written
and will not undermine the integrity of the code (this can be
compared with the process of splitting code up into small
procedures so that they fit into a cyclic executive).

Data shared between non-preempted tasks does not need
to be given mutual exclusion protection. Care must be taken
with cooperative scheduling to ensure that a ‘hold’ call is
not made during an atomic sequence.

2.3. Timing Analysis

This form of non-preemption and cooperative schedul-
ing can be analysed using standard response time analysis
[1]. All kernel (run-time) overheads must, of course, be
accounted for. This includes the overhead involved in exe-
cuting the ‘hold’ operation (even when no task switch oc-
curs). An overview of the form of timing analysis available
to Level-0 systems is given in an Appendix.

3. Time Triggered Model

Although the use of cooperative scheduling can reduce
the impact of blocking, for some applications (with require-
ments for very responsive behaviour) preemption is needed.
Preemption also protects a task from the over-run of lower
priority tasks (without the need for a watch dog timer). Sys-
tems that require tasks with different levels of integrity to
execute on the same processor will also need preemption.
The key to this model is that all activities are periodic (i.e.
triggered by the real-time clock).

Preemptive behaviour could be programmed with a more
extensive use of the suspension facilities and interrupt han-
dlers, but this would now be duplicating what the Real-Time

3

Systems Annex defines as ‘standard’ behaviour. Hence, it
would seem more appropriate to specify this model in terms
of the allowable restrictions defined in the Annex.

3.1. Language Features Required

Using the restricted tasking provision, defined in the
Real-Time Systems Annex, the following language model
can be specified:

No_Task_Hierarchy
No_Nested_Finalization
No_Abort_Statements
No_Termination_Alternatives
No_Task_Allocators
No_Implicit_Heap_Allocation
No_Dynamic_Priorities
No_Asynchronous_Control

Max_Select_Alternatives = 0
Max_Task_Entries = 0
Max_Protected_Entries = 0
Max_Storage_At_Blocking = ...

-- (some appropriate value)
Max_Asynchronous_Select_Nesting = 0
Max_Tasks = ... -- (a statically known value)

Application tasks use ‘delay until’ to program periodic ac-
tivity and protected objects for communication (that is, no
rendezvous). Protected entries are not used.

3.2. Timing Analysis

Again standard timing analysis for preemptive priority
based scheduling (with ceiling priorities for protected ob-
jects) is applicable to this model. The kernel operations for
manipulating the notional delay queue need to be modeled
and then integrated into the analysis of the application tasks.
Such integration has been undertaken for Ada kernels be-
fore.

4. Event Triggered Model

The alternative to time triggered activities is to see all
tasks as being event triggered. To support this requires pro-
tected objects with entries. It is also convenient to allow
interrupts in this model but to remove the clocks. Hence
the No Delay restriction is added and the calendar pack-
ages are omitted. Also Max Protected Entries needs
to changed from the restrictions articulated in the previous
section, but it can still be given a static value 1.

A natural extension to the event triggered model is to
combine it with the time triggered one to give a standard
fixed priority scheduling model.

1It should be noted that pragma Restrictions cannot explicitly re-
move the use of requeue. Once Max Protected Entries has a non-
zero value then requeue would be allowed; however, the event triggered
model described here does not require requeue.

4.1. Timing Analysis

Event triggered systems can be analysed as long as there
is a bound, within any time interval, on the number of events
(from each possible source) that can occur. This bound usu-
ally takes the form of a minimum inter-arrival interval, but
it can also be expressed as an actual bound (say, 3 in any
25ms).

5. Synchronous Communication Model

Formal models of concurrency (e.g. CSP and CCS) often
require a synchronous communication model. The facilities
provided by Ada83 allowed such a model to be defined. A
synchronous communication model would have the follow-
ing restrictions:

No_Task_Hierarchy
No_Nested_Finalization
No_Abort_Statements
No_Task_Allocators
No_Implicit_Heap_Allocation
No_Dynamic_Priorities
No_Asynchronous_Control

Max_Select_Alternatives = ...
-- (a statically known value)

Max_Task_Entries = ...
-- (a statically known value)

Max_Protected_Entries = ...
-- (a statically known value)

Max_Storage_At_Blocking = ...
-- (some appropriate value)

Max_Asynchronous_Select_Nesting = 0
Max_Tasks = ...

-- (a statically known value)

Protected objects are included as they allow a certain class
of passive process to be implemented more efficiently (than
using a task).

5.1. Timing Analysis

Although formal analysis of such models is easier, tim-
ing analysis is made more complex by the synchronous in-
teractions. The temporal behaviour of one task is now cou-
pled to the behaviour of all tasks it communicates with (and
the tasks they communicate with etc). A general scheduling
approach (and timing method) does not really exist for this
approach, although some recent attempts, with a restricted
model, have been published[3].

6. Full Language Model

The inclusion of task hierarchies, ATC, abort and re-
queue add significantly to the kernel complexity and over-
heads. It would seem appropriate therefore to include them

4

only with the model that supports all the tasking and Real-
Time Systems Annex features.

7. Two-Level Model

The ‘full model’ implies the use of a set of tasks that
share a common address space and are scheduled in a single
uniform way. Beyond this model there is a need to support a
separation between groups of tasks, and not to require these
groups to work to the same scheduling policy. One moti-
vation for this would be the support of different levels of
software integrity on the same hardware resource.

Ada’s partition facility is perhaps the only way of pro-
viding this structuring. A partition would then have its
own language model, but the scheduling of the partitions
themselves would need to be addressed. So, for example,
a three partition system (running on the same processor)
could be time-sliced with one partition supporting a level-0
application, one time triggered partition, and the other parti-
tion supporting a full language model. The implementation
would, of course, need to give protection between the parti-
tions (which is not strictly required by the language defini-
tion).

8. Conclusion

A useful activity for the Real-Time Ada Workshop is to
define ‘standard’ language profiles that would subsequently
lead to run-time systems being developed that give direct
and effective support to these profiles. This paper has at-
tempted to initiate such an activity by presenting a number
of natural language models.

Acknowledgements

The authors would like to thanks Offer Pazy for useful
comments on an earlier draft.

Appendix: Analysis for Level-0 Systems

There are a number of ways of analysing a task set that
is scheduled according to the Level-0 approach. For simple
schemes with a small number of tasks, it may be possible to
layout a time-line for the system and inspect its behaviour.
For more complex systems, different forms of analysis are
necessary.

To give an example of the analysis that is available, con-
sider a system in which all tasks are initially released at the
same time; fortunately a system that meets its timing re-
quirements when a critical instant occurs will always meet
its requirements even when releases are phased [6]). For
task

�
we have

���������
	��
�
	����
Where

�
�
is the worst-case response time,

���
is the

task’s worst-case execution time,
���

is the worst-case
blocking time (that is, the time that a lower priority task
could be executing after the release of task

�
), and

���
is the

interference that the task suffers from higher priority tasks.
Three other parameters are needed to give a complete

description of the temporal behaviour of the system:���������
– the time needed to switch back to the scheduler

task when a task executes Hold.����� �"!�#��
– the time needed to resume an application task

when the scheduler calls Continue.$ �
– the computation time of the scheduler task, this can

be parameterised by the task that will be released (as the
higher the priority of the task, the shorter the time spent in
the scheduler loop).

The easiest way of accounting for these system over-
heads is to allocate them to the task that causes them, i.e.� �&% ��� � 	�')(*�+�������,	-����� �"!�#��.	 $ �0/
where

'
is the number of calls to ‘hold’ – if a pure non-

preemptive scheme is used then
'

is 1.
The worst-case blocking time happens when the release

of a task occurs just after the scheduler accessed the clock.
The scheduler then finds and executes the longest non-
preemptive section of a lower priority task:�
�1�3254768�9 � :<; �>= (�?� 8 /
where @BA (� /

is the set of tasks with lower priority than task�
, and

?� 8 is the longest non-preemptive section of task C
(including the associated overheads).

The interference time actually depends upon the re-
sponse time of the task (if it is long enough, a high priority
task may execute more than once before the task

�
can start

and hence complete). Thus� � � D8�9 ��:�; ��= E � �F 8HG � 8
where I7A (� /

is the set of tasks with higher priority than task�
.

The full equation is thus

�
�J�K���L	 25476M 9 � :<; �>= (*� M / 	 D8�9 �N:<; �>= E � �F 8HG � 8 (1)

This can be solved by forming a recurrence relation. The
smallest non-zero value of

�O�
that satisfies equation(1) is

5

the worst-case response time of the task. Define the se-
quence of values ���� as follows:���� � ���� ������ � ���L	 25476M 9 � :<; �>= (*� M / 	 D8�9 �N:<; �>= E �	��F 8 G � 8

The sequence is clearly monotonically non-decreasing.
If � ������ � �	�� then this value represents the smallest non-
negative solution to equation(1). That is

� � � ���� . Alterna-
tively, if � ���
�� �
� �

for some � then the task’s worst-case
response time is beyond its deadline and the task must be
deemed unschedulable.

An improved formulation

An improved formulation comes from noting that, be-
cause of non-preemption, the amount of interference in-
cluded in equation (1) can be reduced; once a task is ex-
ecuting then it will not be preempted by the release of a
higher priority task unless it offers to suspend. In a pure
non-preemption model, it is easy to calculate the worst-case
time (

����
) for the commencement of the task’s execution:���� ���3	 25476M 9 � :<; �>= (*� M / 	 D8�9 �N:<; �>=

� ����F 8�� � 8
where

�
is an arbitrary small value needed to ensure that

the task has actually started.
This equation can again be solved by forming a recur-

rence relation. The true response time is then easily ob-
tained: �
�J� ����L	����

With cooperative scheduling, let
�� �

be defined to be the
size of the task’s last non-preemptive section. All that now
needs to be guaranteed by the scheduling analysis is (

� �������H	��
). The general analysis equations become:

���� � ����� ���� 	�� 	 2L476M 9 � :<; M = (?� M / 	 D8�9 ��:<; �>=
� ��
�F 8�� � 8

� � � �� � 	 �� �
Although in general non-preemption reduces schedula-

bility, it is possible to define task sets that can only be sched-
uled by the cooperative approach. It has been shown [5],
theoretically, that when tasks have their priority raised dur-
ing execution they become more schedulable. Making the
last stage of a task’s execution non-preemptive has the ef-
fect of raising its priority and hence increased schedulability
may result.

References

[1] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems, pages 225–248. Prentice-Hall, 1994.

[2] A. Burns and A. Wellings. Ada 95: An effective concurrent
programming language. In A. Strohmeier, editor, Proceedings
of Reliable Software Technologies - Ada-Europe ’96, pages
58–77. Springer-Verlag Lecture Notes in Computer Science,
Vol 1088, 1996.

[3] A. Burns and A. Wellings. Synchronous sessions and fixed
priority scheduling. Journal of Systens Architecture (to ap-
pear), 1997.

[4] Software Considerations in Airborne Systems and Equipment
Certification DO-178B/ED-12B. RTCA, December 1992.

[5] M. Harbour, M. Klein, and J. Lehoczky. Fixed priority
scheduling of periodic tasks with varying execution prior-
ity. In Proceedings 12th IEEE Real-Time Systems Symposium,
1991.

[6] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. JACM, 20(1):46–
61, 1973.

6

