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Abstract. We present a set of techniques for reducing the memory con-
sumption of object-oriented programs. These techniques include opti-
mizations that eliminate fields with constant values, reduce the sizes of
fields based on the range of values that can appear in each field, and
eliminate fields with common default values or usage patterns. We apply
these optimizations both to fields declared by the programmer and to
implicit fields in the runtime object header. We describe analysis algo-
rithms to extract the information required to apply these optimizations.
We have implemented these techniques in the MIT FLEX compiler sys-
tem and applied them to the programs in the SPECjvm98 benchmark
suite. Our experimental results show that our combined techniques can
reduce the maximum live heap size required for the programs in our
benchmark suite by as much as 40%. Some of the optimizations re-
duce the overall execution time; others may impose modest performance
penalties.

1 Introduction

This paper presents a set of techniques for reducing the amount of data space
required to represent objects in object-oriented programs. Our techniques opti-
mize the representation of both the programmer-defined fields within each object
and the header information used by the run-time system:

– Field Reduction: Our flow-sensitive, interprocedural bitwidth analysis anal-
ysis computes the range of values that the program may assign to each field.
The compiler then transforms the program to reduce the size of the field to
the smallest type capable of storing that range of values.

– Unread and Constant Field Elimination: If the bitwidth analysis finds
that a field always holds the same constant value, the compiler eliminates
the field. It removes each write to the field, and replaces each read with the
constant value. Fields without executable reads are also removed.

– Static Specialization: Our analysis finds classes with fields whose values
do not change after initialization, even though different instances of the
object may have different values for these fields. It then generates specialized
versions of each class which omit these fields, substituting accessor methods
which return constant values.



– Field Externalization: Our analysis uses profiling to find fields that almost
always have the same default value. It then removes these fields from their
enclosing class, using a hash table to store only values of the field that differ
from the default value. It replaces writes to the field with an insertion into
the hash table (if the written value is not the default value) or a removal
from the hash table (if the written value is the default value). It replaces
reads with hash table lookups; if the object is not present in the hash table,
the lookup simply returns the default value.

– Class Pointer Compression: Our rapid type analysis computes an upper
bound on the number of classes that the program may instantiate. Objects in
standard Java implementations have a header field, commonly called claz,
which contains a pointer to the class data for that object, such as inheritance
information and method dispatch tables. Our compiler uses the results of the
analysis to replace the reference with a smaller offset into a table of pointers
to the class data.

– Byte Packing: All of the above transformations may reduce or eliminate the
amount of space required to store each field in the object or object header.
Our byte packing algorithm arranges the fields in the object to minimize the
object size.

All of these transformations reduce the space required to store objects, but some
potentially increase the running time of the program. Our experimental results
show that, for our set of benchmark programs, all of our techniques combined can
reduce the peak amount of memory required to run the program by as much as
40% and never increase the running time by more than 60%. In many scenarios,
a 10% speedup occurs.

1.1 Contributions

This paper makes the following contributions:

– Space Reduction Transformations: It presents a set of novel transfor-
mations for reducing the memory required to represent objects in object-
oriented programs.

– Analysis Algorithms: It presents a set of analysis algorithms that au-
tomatically extract the information required to apply the space reduction
transformations.

– Implementation: We have fully implemented all of the analyses and tech-
niques presented in the paper. Our experience with this implementation
enables us to discuss the pragmatic details necessary for an effective imple-
mentation of our techniques.

– Experimental Results: This paper presents a set of experimental results
that characterize the impact of our transformations, revealing the extent of
the savings available and the performance cost of attaining them.

2 Example

We next present a pair of examples that illustrate the kinds of analyses and
transformations that our compiler performs.



public class JValue {
int integerType = 0;
int floatType = 1;
int type, positive;
Object value;
void setInteger(Integer i) {
type = integerType; value = i;
positive =
(i.intValue() > 0) ? 1 : 0;

}
void setFloat(Float f) {
type = floatType; value = f;
positive =
(f.floatValue() > 0) ? 1 : 0;

}
}

public final class String {
private final char value[];
private final int offset;
private final int count;
...
public char charAt(int i) {
return value[offset+i];

}
public String substring(int start)
{
int noff = offset + start;
int ncnt = count - start;
return new String

(noff, ncnt, value);
}

}
(a) (b)

Fig. 1. (a) The JValue class. (b) Portions of the java.lang.String class.

2.1 Field Reduction and Constant Field Elimination

Figure 1a presents the JValue class, which is a wrapper around either an Integer

object or a Float object. The type field indicates which kind of object is stored
in the value field of the class, essentially implementing a tagged union.1 The
class also maintains the positive field, which is 1 if the wrapped number is
positive and 0 otherwise.

Our bitwidth analysis uses an interprocedural value-flow algorithm to com-
pute upper and lower bounds for the values that can appear in each variable. This
analysis tracks the flow of values across procedure boundaries via parameters,
into and out of the heap via instance variables of classes, and through interme-
diate temporaries and local variables in the program. It also reasons about the
semantics of arithmetic operators such as + and * to obtain bounds for the values
computed by arithmetic expressions. This analysis discovers the following facts
about how the program uses this class: a) the integerType field always has the
value 0, b) the floatType field always has the value 1, c) the type field always
has a value between 0 and 1 (inclusive), and d) the positive field always has a
value between 0 and 1 (also inclusive).

Our compiler uses this information to remove all occurrences of the integerType
and floatType fields from the program. It replaces each read of the integerType
field with the constant 0, and each read of the floatType field with the constant
1. It also uses the bounds on the values of the type and positive variables to
reduce the size of the corresponding fields. Our currently implemented compiler
rounds field sizes to the nearest byte required to hold the range of values that
can occur. Our byte packing algorithm then generates a dense packing of the
values, attempting to preserve the alignment of the variables if possible. In this
case, the algorithm can reduce the field sizes by six bytes and the overall size of
the object by one four-byte word. If the runtime can support unaligned objects

1 This class is a simplfied version of similar classes that appear in some of our bench-
marks. See for example the jess.Value class in SPECjvm98 benchmark jess.



public final class SmallString {
private final char value[];
private final int count;
int getOffset() { return 0; }
...
public char charAt(int i) {
return value[getOffset()+i];

}
}
public final class BigString

extends SmallString {
private final int offset;
int getOffset() { return offset; }

}

public SmallString substring(int start)
{
int noff = offset + start;
int ncnt = count - start;
if (noff==0)
return new SmallString

(value, noff, ncnt);
else
return new BigString

(value, noff, ncnt);
}

(a) (b)

Fig. 2. (a) Static specialization of java.lang.String. (b) Dynamic selection among
specialized classes in a method from java.lang.String.

without external fragmentation, we can reduce the object size by the full six
bytes.

2.2 Static Specialization

Figure 1b presents portions of the implementation of the java.lang.String

class from the Java standard class library. The value field in this class refers to
a character array that holds the characters in the string; the count field holds
the length of the string. In some cases, instances of the String class are derived
substrings of other instances (see the substring method in Figure 1b), in which
case the offset field provides the offset of the starting point of the string within
a shared value character array. Note that the value, offset, and count fields
are all initialized when the string is constructed and do not change during the
lifetime of the string.

In practice, most strings are not created as explicit substrings of other strings,
so the offset field in most strings is zero. In fact, all of the public String

constructors create strings with offset zero; only the substring method creates
strings with a non-zero offset. And even at calls to the private String(int, int,

char[]) constructor inside the substring method, it is possible to dynamically
test the values of the parameters at the allocation site to determine if the newly
constructed string will have a zero or non-zero offset.

Our analysis exploits this fact by splitting the String class into two classes: a
superclass SmallString that omits the offset field, and a subclass BigString
that extends SmallString and includes the offset field. Each of these two new
classes implements a getOffset() method to replace the field: the getOffset()
method in the SmallString class simply returns zero; but the getOffset()

method in the BigString class returns the value of the offset field in BigString.
Figure 2a illustrates this transformation.

At every allocation site except the one inside the substring method, the
transformed program allocates a SmallString object. Inside the substring

method, the program generates code that dynamically tests if the offset in the



substring will be zero. If so, it allocates a SmallString object; if not, it allocates
a BigString object. (See Figure 2b.) This transformation therefore eliminates
the offset field in the majority of strings.

The analysis required to support this transformation takes place in two
phases. The first phase scans the program to identify fields that are amenable to
transformation.2 In our example, the analysis determines that the offset field
is never written after it is initialized. The next phase determines if the value
of this field is determined either by the constructor that initialized it or if it
is a simple function of the parameters of the constructor. In our example, the
analysis determines that the offset field is zero for all constructors except the
private constructor invoked within the substring method. It also determines
that, for objects created within substring, the value of the offset field is simply
the value of the noff parameter to this constructor.

This analysis identifies a set of candidate fields. The analysis chooses one
of the candidate fields, then splits the class along the possible values that can
appear in the field. Our current implementation uses profiling to select the field
that will provide the largest space savings; our policy takes both the size of the
field and the percentage of objects that have the same value for that field. In our
example, the analysis identifies the offset field as the best candidate and splits
the class on that field. We can apply this idea recursively to the new program
to obtain the benefits of splitting on multiple fields.

2.3 Field Externalization

In the string example discussed above, it was possible to determine which version
of the specialized class to use at object allocation time. In some cases, however,
a given field may almost always have a given value, even though it is not possible
to statically determine when the value might be changed or which objects will
contain fields of that value. In such cases we apply another optimization, field
externalization. This optimization removes the field from the class, replacing
fields whose values differ from the default value with hash table entries that
map objects to values. If an object/value mapping is present in the hash table,
that entry provides the value of the removed field. If there is no mapping for
a given object, the field is assumed to have the default value. In our current
implementation, we use profiling to identify the default value.

In this scheme, writes to the field are converted into a check to see if the new
value of the field is the default value. If so, the generated code simply removes
any old mappings for that object from the hash table. If not, the generated code
replaces any old mapping with a new mapping recording the new value.

2.4 Hash/Lock Externalization

Our currently implemented system applies field externalization in a general way
to any field in the object. We would, however, like to highlight an especially
useful extension of the basic technique. Java implementations typically store an

2 See Section 3.5 for a more precise definition.



object hash code and lock information in the object header. For many objects,
however, the program never actually uses the hash code or lock information.
Our implemented system therefore uses a variant of field externalization called
hash/lock externalization. This variant allocates all objects without the hash
code and lock information fields in the header, then lazily creates the fields
when necessary. Specifically, if the program ever uses the hash code or lock
information, the generated code creates the hash code or lock information for
the object, then stores this information in a table mapping objects to their hash
code or lock information.3

Note that, in general, this transformation (as well as field externalization)
may actually increase space usage. But in practice, we have found that our set
of benchmark programs rarely uses these fields. The overall result is a substan-
tial space savings. The combination of class pointer compression and hash/lock
elimination can produce a common-case object header size of one byte — one
byte for a class index and no space at all for hash code or lock.

3 Analysis Algorithms

In this section we will present details of the analyses that enable our transfor-
mations.

3.1 Rapid Type Analysis

We start with a rapid type analysis [6] to collect the set of instantiated classes
and callable methods. This analysis allows us to generate a conservative call
graph for the program, using the known receiver type at the call-site and its set
of instantiated subclasses in the hierarchy. Based on the class hierarchy, we can
also tag all leaf classes as final, regardless of whether the source code contained
this modifier. Methods which are not overridden, based on the hierarchy, are also
marked final, and calls with a single receiver method are devirtualized. We also
remove uncallable methods and assign non-conflicting slots to interface methods
using a graph-coloring algorithm. The results of some class casts and instanceof

operations can also be determined statically using these results.
Our analysis keeps separate the set of mentioned and instantiated classes.

Although type-checks can be made and methods invoked on abstract, interface,
or otherwise uninstantiated classes, every object in the heap must belong to
one of the instantiated class types. The size of the set of instantiated classes is
quite small for a typical Java program, and all but two of the benchmarks in
SPECjvm98 have less than 256 instantiated class types.4 We use this information
to replace the class pointer in the object header, which identifies the type of the
object, with a one-byte index into a small lookup table. The jess and javac

benchmarks require more than one byte of index, but a two byte index amply
suffices in these two cases.
3 The object’s address is used as its key when field externalization is done. The

garbage-collector is responsible for updating the field entries if it moves objects,
by rehashing on the new address.

4 All have more than 256 total class types.



−〈m, p〉 = 〈p, m〉

〈ml, pl〉 + 〈mr, pr〉 = 〈1 + max(ml, mr), 1 + max(pl, pr)〉

〈ml, pl〉 × 〈mr, pr〉 =

〈

max(ml + pr, pl + mr),
max(ml + mr, pl + pr)

〉

〈0, pl〉 ∧ 〈0, pr〉 = 〈0, min(pl, pr)〉

〈ml, pl〉 ∧ 〈mr, pr〉 = 〈max(ml, mr), max(pl, pr)〉

Fig. 3. Some combination rules for bitwidth analysis. Note that the penultimate entry
is a special-case rule that only applies if the neither of the arguments can be negative.

3.2 Bitwidth Analysis

We use a flow-sensitive interprocedural bitwidth analysis to find constant values,
unused and constant fields, and to reduce field sizes where possible. Our data-
flow framework uses Wegman and Zadeck’s Sparse Conditional Constant (SCC)
propagation algorithm [19] as a basis. We then extend their analysis interproce-
durally, add coverage of Java language features, and extend the value lattice to
handle bitwidths. Since almost all types in Java are signed (with the exception
of the 16-bit char), we must be able to describe bitwidths of both negative and
positive numbers, which we do by splitting the set of values into negative, zero,
and positive parts, and describing the bitwidth of each individually.

We abstract sets of non-singleton integer values into a tuple 〈m, p〉 where
m ≥ 1+ blog

2
Nc for all negative N in the set, and p ≥ 1+ blog

2
Nc for positive

N . We use m = p = 0 to represent the constant zero. Some combination rules
for arithmetic operations are shown in Figure 3. The rules for simple arithmetic
operators should be self-evident upon examination (adding two N bit integers
yields at most an N + 1-bit integer, for example) although care must be taken
to ensure that combinations of negative and positive integers are handled cor-
rectly. Our implementation contains additional rules giving it greater precision
for common special cases, such as multiplication by a one-bit quantity, division
by a constant, or (as the figure shows) bitfield operations on positive numbers.

Treatment of Fields Dataflow on this bitwidth lattice is performed on the
entire Java program interprocedurally. The analysis is what Heintze and Tardieu
[11] would call field-based; that is, given a field f defined in class X, and an
instance of X named x, we consider an assignment to x.f to be an assignment
to the field X.f and ignore the base object x.5 The result of the analysis is a
bitwidth specification for each variable and field in the program. As the analysis
is based on SCC, we also identify constant variables and fields; we replace reads
of constant fields with their constant value and the field is eliminated.

5 An obvious extension is to use pointer analysis to discriminate between fields allo-
cated at different sites in the program.



Other Details Our analysis handles method calls by merging the lattice values
of the method parameters at the call site with the formal parameters of the
method. Similarly, the return value of the method is propagated back to all call-
sites. Our compiler’s intermediate representation handles thrown exceptions by
treating the method return value as a tuple, and the call site as a conditional
branch. The “normal return value” is assigned and the first branch taken on a
normal method return, and the “exceptional return value” is assigned and the
second branch taken when an exception is thrown from the method.

Our implementation of this analysis is actually context-sensitive, with a user-
defined context length. All results presented here were obtained with the context
set to zero; we saw no clear benefit from 1- or 2-deep calling contexts, and the
increase in analysis execution time was considerable.

Space does not permit us to describe the remaining details of the full analysis,
including the extension of the value lattice to handle the full range of Java types,
the class hierarchy, null and String constants, and fixed-length arrays. We refer
the interested reader to [4] for an exhaustive description.

3.3 Definite Initialization Analysis

Java field semantics dictate that uninitialized fields must have the value zero (or
null, for pointer fields). It may seem, then, that the starting lattice value for
every integer field should be 0. This, however, prevents us from finding non-zero
field constants in the program: a simple initialization statement like x=5 will
assign x the value 0 u 5, which is not equal to 5!6

We perform a definite initialization analysis to remedy this problem and
restore precision to our analysis. For example, with only constructor A1 in the
following code, field f will get the lattice value 5:

public class A {
int f;
A1(...) { f = 5; }
A2(...) { /* no assignment to f */ }

}

Without constructor A2 in the class, we say that field f is definitely initialized
because every constructor of A assigns a value to f before returning or calling
an unsafe method. Adding constructor A2 allows the default 0 value of f to be
seen; f is then no longer definitely-initialized.

We actually allow the constructor great flexibility in regard to definite ini-
tialization; it is free to call any method which does not read A.f before finally
executing a definite initializer. We construct a mapping from methods to all
fields which they may read, in a flow-insensitive manner, and compute a transi-
tive closure of this map over the call graph to determine a “safe set” of methods
which the constructor may call before a definite initialization of f. As long as
control flow may not pass to a method not in the safe set before f is written,
then f is definitely initialized.

6 On the SCC lattice of [19], 0 u 5 = > (but see footnote 7).



When performing bitwidth analysis, definitely-initialized fields are allowed to
start at ⊥ in the dataflow lattice.7 All other fields must start at value 0, which
will make it impossible for the field to represent a non-zero constant value. The
results of the definite initialization analysis are also used when profiling mostly-
constant fields, as described in the next section.

3.4 Profiling Mostly-Constant Fields

To inform the static specialization and field externalization transformations, we
instrument a profiling build of the code to determine which fields are mostly-
constant. Our implementation builds one binary per examined constant, that is,
one binary to look for “mostly-zero” fields, a separate binary to look for fields
which are usually “one”, a third binary to look for fields commonly “two”, and so
forth. We built ten binaries for each benchmark, looking for field default values
in the interval [−5, 5]. For pointer fields, we only look for null as a default
value. Although our use of multiple binaries is by no means necessary, for ease
of exposition we will discuss our profiling technique as if there is a single default
value N which we are looking for.

Our instrumentation pass starts by adding a counter per class to record the
number of times each exact class type is instantiated. We also add per-field coun-
ters which are incremented the first time a non-N value is stored into a certain
field.8 By comparing the number of times the class (thus field) is instantiated
and the number of times the field is set to a non-N value, we can determine
the amount of memory recoverable by applying a “mostly-N” transformation
to the field, whether static specialization or field externalization. We use this
potential savings to guide our selection of fields for static specialization, using
the field and default value which the profile indicates will yield the largest gain.
If static specialization isn’t an option, the proportion of non-N fields helps indi-
cate whether externalization is likely to result in a net savings; see Section 4.2
for further discussion.

There is one last detail to attend to: when looking for non-zero N values,
the default zero value of uninitialized fields becomes a problem. For these cases,
we use the definite-initialization analysis described in the previous section to
increment the “non-N” counter on any path where the field in question is not
definitely initialized.

3.5 Finding Subclass-Final Fields

Our static specialization transformation can only be applied to what we call
subclass-final fields. Subclass-finality is a less strict but similar constraint to

7 We use ⊥ for “nothing known” and > for “under-constrained”; another segment of
the compiler community commonly reverses these definitions.

8 Note that this requires storing an additional bit per field during profiling to record
whether a non-N value has been seen previously.



Java’s final modifier. We do a single-pass analysis to determine subclass-finality,
using the results from the bitwidth analysis to improve our precision.9

A subclass-final field f of a class A can be written to from any method of a
subclass of A, as well as in any constructor of A. In each write, the receiver’s type
must be a subtype of A, except inside A’s constructors, where the receiver may
also be the method’s this parameter. Multiple writes to f are permitted, unlike
the Java-final fields.

Subclass-finality matches the requirements of the static specialization trans-
formation. Since we always insert a “big” version of the original split class as
parent to any subclasses, subclasses can write to the field in objects of the “big”
type without restriction. We need only restrict writes which occur in the class
proper.

Our analysis constructs the set of subclass-final fields by finding its dual, the
set of non-subclass-final fields. We scan every method and collect all fields with
illegal writes; all fields found are added to the set of non-subclass-final fields.

3.6 Constructor Classification

The final requirement to enable static specialization is to identify constructors
which always initialize certain fields in a given way. In particular, we wish to find
constructors which always give fields statically-known constant values, as well as
constructors which initialize fields with simple functions of their input param-
eters. The first case enables us to unconditionally replace an instantiated class
with a smaller split version; the second case allows us to wrap the constructor
in an appropriate conditional to enable the creation of the small version when
possible.

This analysis is simple, because it builds upon our previous results. In a single
pass over the constructor, we merge the values written to a selected subclass-final
field, treating ParamN as an abstract value for the Nth constructor parameter.
We treat any call to a this() constructor as if it were inlined. By the properties
of subclass-final fields, we know that all writes to the field are to the this object
and that there are no bad writes to the field outside of the constructor. If the
merged value at the end of the pass is a Param value or a constant equal to
the desired “default” value of the selected field, then we can statically specialize
on the field at this constructor site. Further, we rule out specialization on any
otherwise-suitable fields for which there is not at least one callable constructor
amenable to static specialization.

4 Implementation Issues

In this section we will talk briefly about some of the practical issues arising in
an implementation of our space-saving techniques.

9 By using analysis rather than relying on programmer specification, the author need
not restrict all users of their code in order to obtain maximum efficiency for some
constrained uses of it.



4.1 Byte Packing

A typical Java implementation may waste large amounts of space by aligning
fields for the most efficient memory access. Fields are often aligned to their widths
(a 4-byte field will be placed at an address which is an even multiple of 4, for
example), and the object as a whole is often placed on a double-word boundary.
Our implementation places object fields at the nearest byte boundary, although
the information provided by our bitwidth analysis is sufficient to bit-pack the
fields in the object when space is truly at a premium. Preliminary investigation
indicated that the amount of additional space gained by bit-packing is typically
only a few percent, because there aren’t enough sub-byte fields to fill the space
“wasted” by byte alignment.

Some architectures penalize unaligned accesses to fields. It is worthwhile
to attempt to align fields to their preferred alignment while not allowing this
to cause the object size to grow. Further, there are often forced alignment con-
straints on (for example) pointers. Our Java runtime uses a conservative garbage
collector; its efficiency decreases markedly if pointers are not word-aligned.10

Our “byte-packing” heuristic achieves tight packing of fields while respecting
forced alignments. Packing proceeds recursively through superclasses, and re-
turns a list of free-space intervals available between the fields of the superclass.
The algorithm first places all forced-alignment fields in the class, from largest to
smallest. The aim is for the alignment-induced spaces left by the large fields to
be fillable by the following smaller fields.

When there are no more forced-alignment fields, we attempt to allocate fields
on their “preferred” alignment boundaries, largest first. At this stage fields are
not allowed to introduce an alignment gap at the end of the object. If their
preferred alignment does not allow them to be placed flush against the last field
of the object, they are skipped.

Finally, when there are no more fields satisfying preferred-alignments, we
allocate the smallest available field at the lowest possible byte boundary. The
aim is that the small fields will fill space and nudge the end of the object out so
that a larger field may be allocated on its preferred alignment. After each field
is placed, we begin again by attempting to place fields on preferred boundaries.

This heuristic strategy has been observed to work well in practice, and the
penalties for occasionally placing an unaligned non-pointer field have not been
observed to have a material adverse effect on performance (see Section 5.3).

4.2 External Hashtable Implementation

Close attention to the implementation of the hashtable used for field and hash/lock
externalization is necessary to realize the identified possible gains. To maxi-
mize space savings, we need to use as little space per field stored in the table
as possible. The overhead of dynamically allocated buckets and the required
next pointers makes separate chaining impractical as a hashtable implementa-
tion technique. Open-addressing implementations are preferable: in addition to
the value being stored, all that is necessary is a key value and the empty space

10 This means that objects have to be word-aligned as well.



required to limit the load-factor. A load factor of two-thirds and one-word keys
and values yield an average space consumption of three words per field. This
implementation breaks even when the mostly-zero fields identified are zero over
66% of the time. This break-even point is compared to the profiling data to allow
our field externalization transformation to intelligently choose targeted fields.

Key-size reduction is an important component of the implementation: a näıve
approach would combine a one-word reference to the virtual-container object and
a one-word field identifier for a two-word key. The large key will shift the break-
even point up so that only fields which are 82% zero will profit. Instead, we
can offset the object reference (up to the limit of its size) by small integers to
discriminate the externalized fields of the object, yielding a single-word key.

Our implementation leverages the garbage-collector to remove unneeded en-
tries from the hashtable.

4.3 Class Loading and Reflection

This research was conducted using the MIT FLEX compiler infrastructure,11

which is a whole-program static compiler. Although the analyses as described
reflect this, it would be straightforward to use extent analysis [16] to apply trans-
formations to only the closed-world portions of a program which used dynamic
class loading. The space allocated to the class index could be updated during
garbage collection as new classes are discovered. Concurrent profiling could ac-
tually expose more opportunities for space compression in a JIT environment.
And our various transformations need not be user-visible if the reflection imple-
mentation is carefully written.

5 Experimental Results

We have implemented all of the analyses and transformations described in this
paper in FLEX. We measure the effectiveness of our optimizations by using
FLEX to analyze the SPECjvm98 benchmarks and apply our transformations,
then measuring the resulting space savings and performance. All benchmarks
were run on a dual-processor 900 MHz Pentium III running Debian Linux.

5.1 Memory Savings

To evaluate the effectiveness of our technique at reducing the amount of memory
required to execute the program, we first ran an instrumented version of each
application with no space optimizations. We used this instrumented version to
compute the maximum amount of live data on the heap at any point during the
execution. We then ran an instrumented version of our program after each stage
of optimization. These versions enabled us to calculate the amount by which
each technique reduced the size of the live heap data.

Figure 4a presents the total space savings numbers. This figure contains a
bar for each application, with the bar broken down into categories that indicate

11 Available from http://flexc.lcs.mit.edu/.
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(b) Cumulative reduction in dynamic
allocation achieved with our

transformations.
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(c) Reduction in non-array dynamic
allocation achieved with our

transformations.
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(e) Runtime performance of space
optimizations.

Fig. 4. Experimental results of space optimization transformations.



the percentage of live data from the original unoptimized execution that we
were able to eliminate with each optimization. The black section of each bar
indicates the amount of live heap data remaining after all optimizations. We
obtain as much as 40% reduction in live data on the javac benchmark, with
almost all of this reduction coming from our bitwidth-driven field reductions
and static specialization. In fact we obtain more than 15% reduction on all of
the “object-oriented” benchmarks. The compress benchmark allocates a small
number of very large arrays, limiting the optimization opportunities discoverable
by our analysis. Likewise, the raytrace and mtrt benchmarks make heavy use of
floating-point numbers, limiting the applicability of our integer bitwidth analysis.
However, these raytracing benchmarks allocate a large number of small arrays
to represent vectors and matrices, and so our header optimizations still allow us
to reduce the maximum live data size by over 20%.

We also used an instrumented executable to determine the total amount
of memory allocated during the entire execution of the program, in both the
optimized and unoptimized versions. Reducing this total allocation decreases the
load on the garbage collector. Figure 4b presents the space savings according to
this metric. Comparison to the previous figure reveals that long-lived objects
provide proportionally more opportunities for optimization.

5.2 Objects Versus Arrays

The majority of our optimizations are designed to optimize object fields rather
than arrays. For context, we present numbers that characterize the reductions
in total allocation for objects only, rather than for both objects and arrays.
Figure 4c presents space savings numbers for objects alone, omitting any storage
required for arrays. Figure 4d explains the difference by showing how the total
program allocation for each benchmark is broken down into array and object
allocations. The reason for our poor performance on compress is now obvious—
a few large uncompressible integer arrays account for over 99% of the total space
allocated.

5.3 Execution Times

We next evaluate the execution time impact of applying our space optimiza-
tions. Figure 4e presents the normalized execution times of each application after
the application of our sequence of optimizations. These numbers show that the
first several optimizations (class pointer compression, field reduction, and byte
packing) typically reduce the execution times, while the remainder (static spe-
cialization, field externalization, and hash/lock externalization) generate modest
increases in the execution times. The speedup is due to reduced GC times, despite
the indirection and misalignment costs. Static specialization’s virtualization of
fields is responsible for its slowdown; it is likely that an optimized speculatively-
inlined implementation of the field accessors which it adds to the program would
improve its performance. Field externalization (including hash/lock externaliza-
tion) causes the expected penalty for hashtable lookup; note that synchronization
elimination would greatly reduce the cost of hash/lock externalization in the four
cases where the overhead is unreasonable.



6 Related Work

Many researchers have focused on the problem of reducing the amount of header
space required to represent Java locks [5, 12, 1]. The vast majority of programs
do not use the lock associated with every object in its full generality, so it is
possible to develop improved algorithms optimized for the common case. The
idea is to represent the lock with the minimum amount of state (typically a
bit) required to support the common usage pattern of an acquire followed by
a release, and to back off to a more elaborate scheme only when the thread
exhibits a more complex pattern such as nested locking. The primary focus
has been on improving performance rather than on reducing space; however,
many of the algorithms also eliminate the need to store the complicated locking
objects required to support the most general lock usage pattern possible in a
Java program. These techniques typically reduce the lock space overhead to 24
header bits [5].

Research in escape analysis and related analyses can enable the compiler to
find objects whose locks are never acquired [2, 7, 20, 9, 13, 15]. This information
can enable the compiler to remove the space reserved for synchronization sup-
port in these objects. Our hash/lock removal algorithm uses a totally dynamic
approach based on our field externalization mechanism.

Several researchers have used bitwidth analysis to reduce the size of the gener-
ated circuits for compilers that generate hardware implementations of programs
written in C or similar programming languages [3, 4, 14, 17, 8].

Dieckmann and Hölzle have performed an in-depth analysis of the memory
allocation behavior of Java programs [10]. Although space is not their primary
focus, their study does quantify the space overhead associated with the use of a
two-word header and of 8-byte alignment. In general, our measurements of the
memory system behavior of Java programs broadly agree with their measure-
ments.

Sweeney and Tip [18] did a study of dead members of C++ programs, which
is similar to the unread field elimination done by our bitwidth analysis. However,
they fail to identify constant members, which our SCC-based algorithm does
easily. Further, our results show that unread and constant field elimination is
very dependent on the coding style of a particular application. The collection
of techniques we have presented here gives much more consistent savings over a
wide range of benchmarks.

7 Conclusions

We have presented a set of techniques for reducing the memory consumption
of object-oriented programs. Our techniques include program analyses to detect
unused, constant, or overly-wide fields, and transformations to eliminate fields
with common default values or usage patterns. These techniques apply equally
well to both user-defined fields and fields implicit in the runtime’s object header,
and can reduce the maximum heap required for a program by as much as 40%.
Our experimental results from our fully-implemented system validate the oppor-
tunity for space savings on typical object oriented programs.



References

[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. Ramakrishna, and D. White.
An efficient meta-lock for implementing ubiquitous synchronization. In Proceed-
ings of the 14th Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

[2] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static analyses for eliminat-
ing unnecessary synchronization from Java programs. In Proceedings of the 6th
International Static Analysis Symposium, September 1999.

[3] C. Scott Ananian. Silicon C: A hardware backend for SUIF. Available from
http://flex-compiler.lcs.mit.edu/SiliconC/paper.pdf, May 1998.

[4] C. Scott Ananian. The static single information form. Technical Report MIT-
LCS-TR-801, Massachusetts Institute of Technology, 1999.

[5] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks:
Featherweight synchronization for Java. In Proceedings of the ACM SIGPLAN
’98 Conference on Programming Language Design and Implementation (PLDI),
pages 258–268, Montreal, Canada, 1998.

[6] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function
calls. In Proceedings of the 11th Annual Conference on Object-Oriented Program-
ming Systems, Languages and Applications, pages 324–341, California, 1996.

[7] J. Bogda and U. Hoelzle. Removing unnecessary synchronization in Java. In Pro-
ceedings of the 14th Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

[8] M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue inference: Detecting
and exploiting narrow bitwidth computations. In Proceedings of the EuroPar 2000
European Conference on Parallel Computing. Munich, Germany, August 2000.

[9] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for
Java. In Proceedings of the 14th Annual Conference on Object-Oriented Program-
ming Systems, Languages and Applications, Denver, CO, November 1999.

[10] Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior of the
SPECjvm98 Java benchmarks. In Proceedings of the 13th European Conference
on Object-Oriented Programming, August 1999.

[11] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A
million lines of C code in a second. In Proceedings of the ACM SIGPLAN ’01
Conference on Programming Language Design and Implementation (PLDI), pages
254–263, Snowbird, Utah, June 2001.

[12] T. Onodera and K. Kawachiya. A study of locking objects with bimodal fields.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO, November 1999.

[13] E. Ruf. Effective synchronization removal for Java. In Proceedings of the SIG-
PLAN ’00 Conference on Program Language Design and Implementation, Van-
couver, Canada, June 2000.

[14] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and Implementation (PLDI), pages
182–195, Vancouver, Canada, June 2000.

[15] A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-
grams. In Proceedings of the 8th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Snowbird, UT, June 2001.



[16] Vugranam C. Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for
interprocedural optimization in the presence of dynamic class loading. In Pro-
ceedings of the ACM SIGPLAN ’00 conference on Programming language design
and implementation, pages 196–207. ACM Press, 2000.

[17] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application
to silicon compilation. In Proceedings of the SIGPLAN ’00 Conference on Program
Language Design and Implementation, Vancouver, Canada, June 2000.

[18] Peter F. Sweeney and Frank Tip. A study of dead data members in C++ appli-
cations. In Proceedings of the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation (PLDI), Montreal, Canada, 1998.

[19] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems, 13(2):181–
210, April 1991.

[20] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Proceedings of the 14th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Denver, CO, November 1999.


