
 Special Issue on Sensor Networks, Revision, January 2003 1 of 8

Abstract—The highly distributed infrastructure provided by
sensor networks supports fundamentally new ways of
designing surveillance systems. In this paper, we discuss
sensor networks for target classification and tracking. Our
formulation is anchored on location-aware data routing to
conserve system resources, such as energy and bandwidth.
Distributed classification algorithms exploit signals from
multiple nodes in several modalities and rely on prior
statistical information about target classes. Associating data to
tracks becomes simpler in a distributed environment, at the
cost of global consistency. It may be possible to filter clutter
from the system by embedding higher-level reasoning in the
distributed system. Results and insights from a recent field test
at 29 Palms Marine Training Center are provided to highlight
challenges in sensor networks.

Index Terms—Sensor Networks, Classification, Tracking,
Collaborative Signal Processing, Location Aware Routing

I. INTRODUCTION

Sensor networks are an emerging technology that promises
unprecedented ability to monitor and instrument the
physical world [1, 2, 3]. Sensor networks consist of a large
number of inexpensive wireless devices (nodes) densely
distributed over the region of interest. Nodes have wireless
connectivity and are tied to a backbone command network,
such as the Internet. They are typically battery powered
with limited communication and computation abilities [4].
Each node is equipped with a variety of sensing modalities,
such as acoustic, seismic, and infrared.

Many challenges must be overcome to implement
practical sensor networks. Two critical areas are: (i)
efficient networking techniques, and (ii) collaborative
signal processing (CSP) to efficiently process distributed
information gathered. These problems are interconnected.
For example, the utility of combining sensed data across
nodes depends on network characteristics, such as latency.
However, characteristics of the data exchanged, such as
volume, affects network performance.

In this paper, we discuss a CSP framework for target
classification and tracking in sensor networks. Our
framework uses location-aware data routing that limits the
scope of CSP to relevant subset of nodes conserving
network resources, such as energy and bandwidth. Existing
centralized algorithms for classification/tracking could be
adapted for decentralized CSP using location-based

formulations. However, CSP algorithms need to make
efficient use of the sensor nodes’ limited communication
and computation abilities. The framework presented in this
paper illustrates one approach for leveraging existing
tracking and decision-making techniques within the
constraints of sensor networks. We refer the reader to
[4,5,6] for related work.

Thematic Example: Tracking a Single Target. We
consider as an example tracking a target using a sensor
network. Subsequent sections elaborate on the component
problems of data routing, target classification and tracking.

Each object in the sensor field generates a time-varying
spatial signature field that is sensed using multiple
modalities [7]. A moving object is a spatial peak in a
signature field that moves over time. Tracking a target
involves tracking the peak location over time. To enable
distributed tracking, the sensor field is divided dynamically
into spatial cells. Within each cell, a manager node
coordinates CSP tasks.

The approach presented has five basic steps for
collaborative detection, classification, and tracking of a
target moving through a sensor field.
1. Cells near potential target trajectories are put on alert.

Nodes within cells collaborate to determine if a target
is present.

2. When a target is detected, the cell becomes active. If
classification finds a target of the desired type, tracking
is initiated.

3. Tracking includes estimating target location, direction
and speed for predicting future target positions.

4. Based on the predictions data from the active cell is
sent to other cells; alerting them and facilitating CSP.

5. When the target is detected in an alerted cell that cell
becomes active and the process repeats.

II. LOCATION AWARE ROUTING AND PROCESSING

Collaborative detection, classification, and tracking require
data exchange between sensor nodes over an ad hoc
wireless network with no central coordination of medium
access. Instead, a fully distributed protocol regulates access.
Furthermore, the communication range is very limited due
to energy, size, and environmental constraints. Information
must be forwarded from node to node to reach nodes
outside the immediate vicinity.

Distributed Target Classification and Tracking
in Sensor Networks

R. R. Brooks, Sr. Research Associate, Applied Research Laboratory, Pennsylvania State University

P. Ramanathan, Professor, Electrical and Computer Engineering, University of Wisconsin

A. M. Sayeed, Professor, Electrical and Computer Engineering, University of Wisconsin

 Special Issue on Sensor Networks, Revision, January 2003 2 of 8

In conventional wireless networks, data is exchanged
between specific nodes. Even when nodes move, the
connection remains between the same nodes. In contrast, in
sensor networks, information exchange is between nodes in
the same geographic region or concerning data with
specified attributes. As nodes and targets move, the set of
nodes involved in exchanges changes to reflect the new
geographic regions and data attributes. As a result, it is
widely accepted that traditional Internet Protocol (IP) based
networking is not suited to sensor networks.

Data-centric and location-centric networking are
alternatives to IP for data exchange in sensor networks
[7,8,9]. In the data-centric approach [9,10], sensor nodes
publish or subscribe to data with attributes defined in the
communications request. Other nodes may not immediately
have the data to respond. They note subscriptions for future
use. When data whose attributes match the subscription
becomes available, nodes transmit the data. Subscribed
nodes receive published data over the network. The
advantage of the data-centric approach is that no data is
exchanged before events of interest occur. However, the
nodes must periodically renew subscriptions, and the
network must maintain routes from all publishing nodes to
the subscribed nodes.

Cell 1

Cell 2

Cell 3a

Cell 3b

Cell 1

Cell 2

Cell 3a

Cell 3b
Figure 1. Location-centric approach for target tracking.

In the location-centric approach, geographic cells play
the role of nodes in IP networks [7,8]. Depending on the
data requests, cells are created and tasked as needed. A
manager node is created and tasked with coordinating
activities in the cell as needed. Nodes in cells
collaboratively decide when events of interest occur. If
other cells are needed, the manager node creates and tasks
new cells. For example, consider target tracking in Figure 1.
A target enters the field and cell 1 forms to track it. Data is
shared locally and the manager node creates cell 2 to
maintain surveillance. The manager of cell 2 creates cells
3a and 3b to continue the track as appropriate, since the
target may take alternative paths. In Section 3, we will
discuss how cell sizes can be determined dynamically and
one example of how data can be shared. All decisions are
made dynamically with local information.

Diffusion routing is a solution proposed to efficiently
route data in the data-centric approach. In diffusion routing,
nodes exchange two types of control messages, interests
and reinforcements. Interests are data subscriptions. They

are diffused to convey node interests. This dissemination
sets up gradients within the network “drawing” relevant
data to interested nodes. Data flows to interested nodes
along multiple paths. The network reinforces paths using
control messages. Over time, data is sent only along
reinforced paths [9]. Enhancements to this approach can
take advantage of location information [10].

UW-routing is a location-centric approach developed at
the University of Wisconsin [8]. Unlike diffusion routing,
routes are not established and maintained until data needs to
be communicated. To forward data from cell to cell, a
Route Request (RREQ) is diffused through the network. A
cell is addressed by its geographic location and this
information limits data propagation. Also, as the RREQ
propagates, state information is temporarily deposited in the
network to identify an efficient route from source to
destination cells in a distributed manner. When the RREQ
reaches a node in the addressed cell, it responds with a
RREP control message. The RREP message is routed to the
source cell using the state information from the propagation
of the RREQ. When the RREP message reaches the source
cell, a single path to the destination cell is established. This
path is used to send data from the source cell to nodes in the
destination cell. In the destination cell, data is diffused to all
nodes in the cell by the manager node.

III. TARGET TRACKING

Centralized tracking [11] using sensor networks is possible,
but has numerous drawbacks. Sending time series data
through the network introduces latency and synchronization
issues. It also consumes energy and network bandwidth,
while potentially introducing a single point of failure.
Associating sensor readings to tracks suffers from
combinatorial explosion when multiple sensors are used. It
becomes ambiguous when sensors have overlapping ranges,
disagree, or when multiple targets are present [12].

Initialization RECV track
candidates Disambiguate Local detection

Merge detection
w/ track

Confidence
> threshold

Report
track(s)

Estimate
future track

XMIT future
track to
nodes along
track

Yes

No

Initialization RECV track
candidates Disambiguate Local detection

Merge detection
w/ track

Confidence
> threshold

Report
track(s)

Estimate
future track

XMIT future
track to
nodes along
track

Yes

No

Figure 2. Flowchart of the processing performed at any

given node to allow distributed target tracking.

Figure 2 gives a flowchart of the data flow at each node
in our distributed tracking approach. Multiple threads
execute concurrently and the system is a peer-to-peer
network. All nodes execute the same logic:
1. Initialization declares node attributes to the location-

centric network.
2. Candidate track information describing approaching

targets is continuously received and stored in
temporary priority queues.

 Special Issue on Sensor Networks, Revision, January 2003 3 of 8

3. Local detection and parameter estimation provide
inputs to the tracking algorithm.

4. Detections are merged with the track that best fits the
current data. Target attributes from the candidate track
record are projected forward to the time of the current
detection and compared with the current data.

5. Confidence threshold is set so that when no candidate
tracks adequately match the current detection, a new
track record is created.

6. Estimate future track from recent information and
update the track record.

7. Report track update to user community (outside the
scope of this paper).

8. Transmit updated track record to regions along the
target trajectory. Using multiple regions of varying size
can provide fault tolerance. Queues containing precise
regions are considered first.
Local parameter estimation is done using a location

centric approach. Closest Point of Approach (CPA) data is
shared locally. The CPA is a robust statistic and easily
detected. It corresponds to the signal peak in Figure 4. Cells
form dynamically within a limited space-time window. The
manager node is chosen as the sensor node with the
strongest signal in the space-time window. Linear
regression using the trigonometry of node locations is used
to estimate target position, velocity and heading. In the
numerical results presented below, typically one CPA event
from each of three modalities of four to five nodes was used
in this calculation (12 to 15 total). The results in [13] show
this to be a reliable technique.

Given local detection information and a list of tracks,
data association is required to map the detection to a track.
In the results we present here, we used a simple Euclidean
metric computing the difference of the last target track
estimate (position, velocity, and heading) projected forward
to the time of current detection. In a multi-target tracking
scenario with n targets and n tracks, [12] states that
centralized association requires at least n (n-1)
comparisons. In the distributed case, the manager node is
the only one performing comparisons. It has one detection
and at most n candidate tracks (possibly fewer) and thus at
most n comparisons are required. Hence, the combinatorial
explosion that exists in the centralized case does not occur.

When a track is continued, the manager node defines a
new cell. The cell position encloses the region the target is
likely to traverse. The cell size is a function of observed
target velocity. The track information packet is routed to the
new cell. The tracking process repeats at this point.

Figure 3 shows example target tracks from a field test
at 29 Palms Marine Training Ground. Prototype hardware
easily handled the sensing, processing, and networking
requirements. Network latency and packet dropping were
not significant during this test. Due to a microphone
deployment issue, over 50% of the CPA events detected
were false positives. The linear regression for velocity
estimation found no correlation among false alarm CPA’s
and thus translated false positives into target tracks of zero
velocity, which effectively removed them from the tracking
system.

The left hand image in Figure 3 shows data from the
software used in that test. The target track diverges and
continues through only part of the field. To correct these
deficiencies, various data association and track estimation
techniques were tested. The middle image shows an
Extended Kalman Filter (EKF), similar to the one in [14,
15], added to the track estimation process. It reduced track
divergence and targets were tracked for a longer distance.
The EKF implicitly assumes a target with linear motion and
does not enforce global consistency.

The right image in Figure 3 shows results using “lateral
inhibition.” Before continuing a track, nodes whose current
readings match a candidate track broadcast their intention to
continue the track. They wait for a period of time
proportional to the log of their goodness-of-fit metric.
During this wait, they can receive messages from other
nodes that fit the candidate track better, in which case, they
drop their continuation. If no other node has a better fit, the
node continues the track. In our tests, this approach reduced
track divergence more than the other approaches. It does
not assume a linear trajectory and enforces some global
consistency.

Table 1 contains error information for the techniques in
Figure 3. Tracks produced using the EKF appear to be the
most accurate, with lateral inhibition not being significantly
worse. Lateral inhibition does have a significant advantage
in reducing the tendency of tracks to diverge since it does
not assume any target trajectory.

RMS for tracks from Nov 08 2001
Live Data EKF Lateral Inhibition EKF & LAT

Averaged 18.108328 8.877021 9.361643 11.306236
Track Summed 81.456893 52.775338 13.535534 26.738410

RMS for track beginning at Nov_08_14.49.18.193_2001
Live Data EKF Lateral Inhibition EKF & LAT

Averaged 14.977790 8.723196 9.361643 8.979458
Track Summed 119.822320 183.187110 18.723287 35.917832

Table 1. Root mean square error comparison for the data association and track estimation techniques discussed. The top set of
numbers is for all target tracks collected on Nov. 8, 2001. The bottom set of numbers is for the target run in Figure 3. In each set,
the top row is the average error for all tracks made by the target during the run. The bottom row sums the error over all the
tracks. Since these tests were of a target following a road, the EKF filter has an advantage since it assumes a linear trajectory.
Lateral inhibition still performs well, although it is non-parametric.

 Special Issue on Sensor Networks, Revision, January 2003 4 of 8

Figure 3. Tracks of the same single target at 29 Palms. Axes are UTM coordinates. Circles are sensor nodes. The faint curve
through the nodes is the middle of the road. Dark arrows are the reported target tracks. Dotted arrows connect the manager nodes
that formed the tracks. From left: no filtering, EKF, and lateral inhibition.

CPA size 40
Inhibition size 56

Track packets Track pack size CPA packets Inhib. packets Total
EKF 852 296 59 0 254552
Lateral inhibition 217 56 59 130 21792
EKF & Lateral inhibition 204 296 59 114 69128
Centralized 0 0 240 0 9600

Table 2. Data transmission requirements for the different data association techniques. The total is the number of bytes sent
over the network. The EKF requires covariance data and previous data points. Angle gating and lateral inhibition require
less data in the track record. Data is from the tracking period shown in Figure 3.

Table 2 compares the network traffic incurred by the
approaches shown in Figure 3 with the bandwidth required
for a centralized approach using CPA data. CPA packets
had 40 bytes, and the lateral inhibition packets had 56
bytes. Track data packets vary in size, since the EKF
required three data points and a covariance matrix. The
table shows that lateral inhibition requires the least network
bandwidth due to reduced track divergence.

Note from Table 2, that in this case centralized tracking
required less than half as many bytes as lateral inhibition.
This data is somewhat misleading. The data shown is from
a network of 40 nodes with an Internet gateway in the
middle. As the number of nodes and the distance to the

gateway increases, the number of packet transmissions will
increase for the centralized case. For the other techniques,
the number of packets transmitted will remain constant.
Recall the occurrence of tracking filter false positives in the
network, which was more than 50% of the CPA’s during
this test. Reasonably, under those conditions the centralized
data volume would more than double over time and be
comparable to the lateral inhibition volume. Note as well
that centralized data association would involve as many as
24 to 30 CPA’s for every detection event in our method.
When association requires O(n2) comparisons [12] this
becomes an issue.

 Special Issue on Sensor Networks, Revision, January 2003 5 of 8

IV. TARGET CLASSIFICATION

In this section we outline a CSP approach to target
classification based on node measurements within a cell.
We discuss fusion of measurements from a purely decision
theoretic viewpoint, followed by distributed application of
the fusion techniques in sensor networks, along with the
associated communication and computation burden. We
discuss Gaussian classifiers that assume Gaussian data – the
general fusion principles presented here also apply to
arbitrary classifiers. Gaussian classifiers exploit only the
second-order statistics of the (possibly non-Gaussian) data
and are an attractive choice requiring estimation of mean
vectors and covariance matrices, instead of arbitrary joint
probability densities, for different target classes.

A. Single Measurement Classification
Event detection. Classifiers operate on feature vectors
extracted from time series data corresponding to an event.
Node detection algorithms extract data segments. Energy
detectors are typically used for event detection. At each
instant, the detector monitors signal energy in a given time
window. Events are declared when the energy exceeds a
threshold. The threshold is dynamically updated based on
background noise statistics to maintain a constant false
alarm rate. Once a node detects an event (e.g., the presence
of a moving vehicle), it stores a time series segment
corresponding to the event. As illustrated in Figure 4, the
time series segment is extracted from the interval in which
the energy first exceeds the threshold (event onset) and then
drops below it (event offset) due to the target passing by the
node. The time instant of the maximum reading signifies
the CPA. Time series data may also be used for target
localization algorithms (see, e,g. [16, 17]). Simpler
localization algorithms that exploit energy decay profile are
also possible [7].

Figure 4. Illustration of event detection by thresholding the

energy detector output. The horizontal line represents
the threshold. The maximum reading corresponds to
CPA time.

Lower dimensional feature vectors are extracted from
time series. Feature vector selection is important as it
impacts classifier performance [18]. In our work, spectral
(Fourier) features were used since vehicle signatures exhibit
dominant harmonic characteristics [7]. Each event yields
multiple feature vectors that are collapsed into a single
effective one, the mean, for example.

Gaussian classifiers. Let x denote an N dimensional
complex-valued event feature vector. Suppose there are M
target classes, },,1{ Mm L=Ω∈ω . We assume each event
consists of a single target. A classifier C assigns x to one of
the target classes. We focus on maximum likelihood (ML)

classifiers corresponding to equal prior probabilities for
different classes [16]. The ML classifier is given by

)|(maxarg)(
,,1

j
Mj

PC ωxx
L=

= which assigns the class with the

largest likelihood)|(jP ωx to x. In Gaussian classifiers, the
feature vectors are modeled as complex Gaussian with
mean][xµ jj E= and covariance matrix][H

jj E xxS = , where

the superscript H refers to complex conjugate transpose and
[.]jE denotes ensemble average over the j-th class. The

likelihood function then takes the form

))()(exp(
||

1)|(1
jj

H
j

j
NjP µxSµx

S
x −−−= −

π
ω .

Training and testing. Designing the Gaussian
classifier corresponds to determining the mean vectors and
covariance matrices for the different classes. This is done
from available training data. The training and performance
assessment is usually done through cross-validation [18] in
which the available data is split into multiple groups of
training and testing subsets. For each group, the mean
vectors and covariance matrices for all classes are estimated
from the training sets. The estimated parameters are then
used for assessing the performance of the classifier using
the testing set. The results of the experiments generate an M
by M confusion matrix whose elements ijij n=][CM

represent the number of vectors from iω classified as jω .
Two performance metrics are typically computed from the
confusion matrix. The probability of correct detection for

class m is given by ∑
=

=
M

j
mjmmm nnPD

1
and the probability of

false alarm is computed as ∑
∑−

=
≠=

=

M

mkk
M

j
kj

km
m

n

n
M

PFA
,1

1

1
1 which

signifies the probability that an event is labeled from class
m when the true underlying class is different.

B. Multiple Measurements
Suppose that multiple measurements are available for each
event. These measurements may be from different sensing
modalities at a particular node or from multiple
measurements at different nodes. Suppose K measurements
are available. Let kx , k =1, …, K, denote the feature vector
for the k-th measurement. The classifier now operates on all
K measurements to decide the class for the event

),,(maxarg),,(
,,1

j
Mj

PC ω|K1K1 xxxx LL
L=

= .

The classifier can combine the information from
different measurements in two ways: 1) Data fusion in
which the classifier jointly operates on the feature vectors
of all measurements, or 2) Decision fusion in which the
classifier combines the decisions of the component
classifiers for each measurement. From a purely decision
theoretic viewpoint, the choice between data versus
decision fusion depends on the statistical relation between
the different measurements, as elaborated next.

Data Fusion. If the different measurements yield
correlated information, data fusion is needed in general for
best performance. Suppose that, for any given class, the

 Special Issue on Sensor Networks, Revision, January 2003 6 of 8

different measurements are jointly Gaussian. That is, for
class j, the concatenated feature vector []TK

TTc xxx ,,1 L= is
characterized by the mean vector c

jµ and the covariance

matrix c
jS . The ML classifier based on data fusion can then

be designed and tested in the same way as the single-
measurement classifier described in Section IV-A by using
concatenated feature vectors.

Decision Fusion. If the different measurements are
statistically independent, the likelihood function factors as

)|()|,,(
1

1 j

K

k
kjK PP ωω ∏

=
= xxx L which suggests combining the

decisions of the component classifiers (for different
measurements) to make the final decision. Either hard or
soft decisions may be combined [18, 19]. We limit our
discussion to soft decision fusion. There are a variety of
possibilities for decision fusion, all of which stem from
successive bounds for the factored likelihood [19]. The sum

rule is robust [19]: 







= ∑

==

K

k
jk

Mj
K PC

1,,1
1)|(maxarg),,(ωxxx

L
L .

Other rules based on the median, minimum or maximum of
the component likelihoods may also be used. Multiple
measurement classifiers based on decision fusion can be
designed from training data by estimating the mean vectors
and covariance matrices for component classifiers as
described in Section IV-A.

C. Different Forms of CSP in Sensor Networks
We now discuss the application of decision and data fusion
of multiple measurements in sensor networks. As
mentioned earlier, multiple measurements may be from
different modalities at a single node or from different
modalities at different nodes. We consider a single cell
consisting of P nodes. Each node can sense in K different
modalities. Let kp ,x denote an event feature vector for the k-

th modality at p-th node, and let kpC , denote the
corresponding component classifier. For concreteness, we
consider K=2 modalities and P=3 nodes with the third node
being the manager node. Let C denote the overall CSP
classifier at the manager node. We discuss various CSP
classifiers in the order of increased communication and
computational burden on the network.

Single Node Multiple Modality (SN, MM). This is
the simplest form of CSP since it is limited to data in
multiple modalities at a single node (no communication
burden). The final classifier takes the form

mCCC →))(),((2,12,11,11,1 xx for decision fusion and
mC →),(2,11,1 xx for data fusion. The latter imposes a higher

computational burden since it involves KN dimensional
joint processing as opposed to N dimensional component
processing in the former.

Multiple Node Single Modality (MN, SM). This
form of CSP involves higher communication burden since
data or decisions from P nodes are shared. The final
classifier is of the form mCCCC →))(),(),((1,31,31,21,21,11,1 xxx for
decision fusion and mC →),,(1,31,21,1 xxx for data fusion.
Decision fusion entails communication of P-1 decisions to

the manager node that jointly processes the P component
decisions. Data fusion involves communication of N
dimensional event feature vectors from P-1 nodes to the
manager node that jointly processes the PN dimensional
concatenated feature vector.

Multiple Node Multiple Modality (MN, MM). This
is the most general form of CSP that entails the highest
communication and computational burden. In this case,
various forms of CSP are possible.
a) Decision fusion across modalities and nodes. The final

decision is given by mCCCC →•••),,(,3,2,1 where
),(2,1,,, pppp CCCC •• ≡ denotes the component decision at p-

th node formed by fusing the decisions of classifiers for
the K (=2) modalities at that node. This sub-case entails
the least communication and computational burden since
only decisions need to be communicated to and processed
by the manager node.

b) Data fusion over modalities and decision fusion over
nodes. The final decision is given by mCCCC →•••),,(,3,2,1
where),(2,1,,, pppp CC xx•• ≡ denotes the component

decision at p-th node formed via data fusion over
modalities at that node. Compared to the last sub-case,
this one entails higher computational burden at individual
nodes. One possibility, intermediate to the above two
sub-cases, is in which data fusion is performed over
nodes in modality 1 and decision fusion in modality 2.
The final decision is given by

mCCCCCC →••)),,(),,,((2,32,22,12,1,31,21,11, xxx .
c) Data fusion over modalities and nodes. The final

decision is mC →),,,,,(2,31,32,21,22,11,1 xxxxxx which entails
the highest communication and computational burden
since K, N-dimensional event feature vectors are
communicated from each of the P-1 nodes to the manager
node that jointly processes the final PKN dimensional
concatenated event feature vector. Note that if the
measurements at different nodes and in different
modalities are independent, this sub-case reduces to a).

Numerical Results. We briefly present some (MN,
SM) numerical results using data collected in field
experiments of the DARPA SenseIT program. The results
are based on N=50 dimensional FFT features derived from
acoustic measurements. Classification between wheeled
versus tracked vehicles is performed. The tracked data
corresponded to Amphibious Assault Vehicle (AAV)
whereas the wheeled data corresponded to Dragon Wagon
(DW) and Humvee (HV) vehicles. Concatenated and
component covariance matrices for the two classes were
estimated at three nodes within a cell from training data
collected during the experiments. Due to limited training
data, synthetic test data for the three nodes was then
generated using the eigenvalue decomposition of the
estimated correlation matrices and white Gaussian
background noise was added to yield an SNR of 20dB. This
experiment tests the ability to classify the vehicles based on
second-order statistical information in the available data.
The confusion matrix for the single node classifier (that
operated on 50 dimensional feature vectors) is:

 Special Issue on Sensor Networks, Revision, January 2003 7 of 8

SN Dec. = wheeled Dec.=tracked
Class=wheeled 337 163
Class= tracked 120 380
which yields PD = 0.67, 0.76 and PFA = 0.24, 0.32 for the
two classes (Average PD = 0.72). The confusion matrix for
the data fusion classifier is:
MN – data fusion Dec. = wheeled Dec.=tracked
Class=wheeled 396 104
Class= tracked 83 417
which yields PD = 0.79, 0.83 and PFA = 0.17, 0.21 for the
two classes (Average PD = 0.81). The confusion matrix for
the decision fusion classifier (sum rule) is:
MN – dec. fusion Dec. = wheeled Dec.=tracked
Class=wheeled 342 158
Class= tracked 63 437
which yields PD = 0.68, 0.87 and PFA = 0.13, 0.32 for the
two classes (Average PD = 0.78). As evident, data fusion
performed the best with decision fusion in between single
node and data fusion. In particular, the decision fusion
classifier performs nearly as well as the data fusion
classifier but with significantly lower communication and
computational burden. The data fusion classifier requires
communication of 50 dimensional vectors from each node
to the manager node, compared to the communication of
scalars (decisions) in decision fusion. Furthermore, the data
fusion classifier computes 150 dimensional quadratic forms
of the concatenated feature vector, whereas the decision
fusion classifier simply uses the sum of the three scalar
decisions. We direct the readers to [7] for the performance
of other types of classifiers on real data.
Pros and Cons of Data versus Decision Fusion
1. Decision fusion is preferable due to lower

communication and computational burden. It also
requires lesser amount of data for training. This is
particularly important when limited training data is
available as it enables more accurate estimation of
classifier parameters (covariance matrices).

2. Data fusion can potentially yield the best performance
at the cost of higher communication and computational
burden if measurements are sufficiently correlated.

3. Data fusion across modalities (no communication
burden) and decision fusion across nodes is attractive.

4. Decision and/or data fusion may not yield sufficient
improvement in performance if inconsistencies
between multiple measurements are present, such as
due to malfunctioning nodes. Some recent results
indicate that decision fusion might perform better in
such a fault-tolerant context [20].

5. Measurements yielding complementary performance
should ideally be combined. For instance, modalities
M1 and M2 may both be effective for classifying AAV
versus DW but not AAV versus HV, whereas modality
M3 may be useful for classifying AAV versus HV.
Combining M1 and M3 (or M2 and M3) would likely
be more beneficial than combining M1 and M2.

In general, measurements from different nodes within a cell
will exhibit a combination of dependent (correlated) and
independent (uncorrelated) components. The optimal

classifier performs data averaging over the correlated
components to improve the effective signal to noise ratio
(SNR) and decision averaging over uncorrelated
measurements to reduce the inherent statistical variation in
the signal. Some recent work shows that for targets
modeled as zero-mean stochastic (Gaussian) signals, the
decision fusion classifier incurs a relatively small loss in
effective SNR compared to the optimal classifier even in
the presence of correlated measurements [21]. Thus, the
decision fusion classifier, which is clearly the attractive
choice in view of the communication and computational
burden, is also a robust choice from a decision theoretic
viewpoint.

V. ISSUES AND CHALLENGES

We presented CSP methods for target classification and
tracking in distributed sensor networks. These algorithms
exploit multiple sensing modes gathered at different nodes.
Significant savings are possible in power and bandwidth
consumption by processing time series locally. Significant
information can be distilled from the time series. Location
aware routing limits data distribution to regions directly
affected by the data. Results based on field tests show these
approaches are feasible. Further research is needed to
determine the operational limitations of these approaches.

As CSP techniques often rely on prior statistical
information about the signals, an overriding challenge is to
make CSP algorithms robust and/or adaptive to variations
in environmental conditions that can significantly influence
statistical signal characteristics [7]. For example, the
presence of a strong wind can radically influence acoustic
measurements. Similarly, different vehicle operating
conditions, such as gearshifts and acceleration must also be
taken into account. Finally, the effect of Doppler shifts can
also be quite pronounced in acoustic and seismic
measurements due to the relatively slow speed of wave
propagation in such modalities [7].

The choice between decision versus data fusion
depends on the statistical correlation between different
measurements. Thus, algorithms for determining the subset
of nodes for data versus decision fusion could significantly
enhance the efficiency of CSP algorithms. One simple
approach may be based on the observation that feature
vectors from different nodes provide snapshots of the target
signal at different times. Thus, nodes in close proximity
will be highly correlated, whereas sufficiently spaced nodes
will be weakly correlated. A simple measure of the degree
of correlation between nodes could be derived from the
knowledge of the bandwidth of the target signal and the
location of the nodes relative to the target (e.g., a stationary
stochastic signal decorrelates after a time interval inversely
proportional to its bandwidth). Recent work on a related
topic is reported in [22].

Tracking results indicate that using laterally inhibited
distributed tracking is currently about as efficient as
centralized tracking in network resource consumption.
Lateral inhibition is simpler computationally and scales
better. In large-scale networks it is likely to be the better
alternative. Work still needs to be done on optimizing

 Special Issue on Sensor Networks, Revision, January 2003 8 of 8

packet and cell sizes. Work is also needed to fully realize
the ability of the distributed system to support target classes
with different dynamics and maintain multiple track
hypotheses [23].

Finally, the classification and tracking algorithms
presented here primarily apply to a single target or multiple
targets that are separated sufficiently in space and/or time.
Tracking multiple closely spaced targets is a challenging
problem that relies on classification algorithms. Single-
target classification algorithms can be extended to deal with
multiple targets. A key problem is the interference between
signals from different targets. In a multiple target classifier,
each component classifier for a particular target class must
also suppress interference from targets from other classes.
Subspace-based methods may be leveraged in this context
(see, e.g., [24] and references therein).

VI. ACKNOWLEDGMENTS AND DISCLAIMER

Dr.s Brooks and Ramanathan’s participation was partially
supported by the Defense Advanced Research Projects
Agency (DARPA), and administered by the Army Research
Office under Emergent Surveillance Plexus MURI Award
No. DAAD19-01-1-0504. Profs. Ramanathan and Sayeed’s
work was partially supported by the DARPA SenseIT
program under grant no. F30602-00-2-0555. Dr. Brooks’
efforts also partially sponsored by the Defense Advance
Research Projects Agency (DARPA) Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-99-2-0520 (Reactive Sensor
Network).

The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those o f the authors and do
not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA), Air Force Research
Laboratory (AFRL), and Army Research Office (ARO).

VII. REFERENCES
[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, Instrumenting

the world with wireless sensor network, Proc. ICASSP’2001, Salt
Lake City, UT, 2001, pp. 2675-2678.

[2] J. Agre and L. Clare, An Integrated architecture for cooperative
sensing networks, Computer, vol. 33, pp. 106-108, May 2000.

[3] S. Kumar, F. Zhao and D. Shepherd, Eds., Special Issue on
Colllaborative Signal and Information Processing in Microsensor
Networks, IEEE Signal Processing Magazine, March 2002.

[4] D. L. Hall and J. Llinas, “An Introduction to Multisensor Data
Fusion,” Proc. IEEE, vol. 85, no. 1, pp. 6-23, Jan 1997.

[5] M. Liggins II, C-Y Chong, I. Kadar, M. G. Alford, V. Vannicola,
and S. Thomopoulos, “Distributed Fusion Architectures and
Algorithms for Target Tracking,” Proc. IEEE, vol. 85, no.1, pp. 95-
107, Jan 1997.

[6] B. Dasarathy, “Sensor Fusion Potential Exploitation – Innovative
Artchitectures and Illustrative Applications, Proc. IEEE, pp. 24-38,
Jan. 1997.

[7] D. Li, K. Wong, Y. Hu and A. Sayeed. (2002) Detection,
Classification, Tracking of Targets in Micro-sensor Networks, IEEE
Signal Processing Magazine, pp. 17-29, March 2002.

[8] P. Ramanathan, K.-C. Wang, K. K. Saluja, and T. Clouqueur,
“Communication support for location-centric collaborative signal
processing in sensor networks,” Proc. of DIMACS Workshop on
Pervasive Networks, May 2002.

[9] J. Heidemsnn, F. Silva, C. Intanagonwiwat, D. Estrin, and D.
Ganesan, “Building efficient wireless sensor networks with low-
level naming,” Proc. Sym. on Operating Sys. Princ., pp. 146-159,
Oct. 2001.

[10] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed energy
conservation for ad-hoc routing,” Proc of Mobicom, July 2001.

[11] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data
Association ,, Academic Press, Boston, 1988.

[12] D. L. Hall, Mathematical Techniques in Multisensor Data
Fusion, Artech House, Boston, 1992.

[13] D. S. Friedlander and S. Phoha, “Semantic Information Fusion
for Coordinated Signal Processing in Sensor Networks,” Int. J. High
Performance Computing Applicat. vol. 16, no. 3, pp.235-242, Fall
2002

[14] R. Brooks, C. Griffin, and D. Friedlander, “Self-organized
distributed sensor network entity tracking,” Int. J. High Performance
Computing Applicat vol. 16, no. 3, pp.207-220, Fall 2002.

[15] R. R. Brooks and S. S. Iyengar, Multi-sensor Fusion:
Fundamentals and Applications with Software, Prentice Hall PTR,
Upper Saddle River, NJ, 1998.

[16] J. Chen, K. Yao, and R. Hudson, Source Localization and
Beamforming in Microsensor Networks, IEEE Signal Processing
Magazine, pp. 30-39, March 2002.

[17] P. Boettcher and G. Shaw, A distributed time -difference of
arrival algorithm for bearings-only target localization, in Proc. 4th Int.
Conf. Information Fusion, pp. TuC3-9-TuC3-14, Montreal, CA,
August 2001.

[18] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd
Edition, Wiley, 2001.

[19] J. Kittler, M. Hatef, R. Duin, J. Matas, On Combining
Classifiers, IEEE Trans. Pattern Anal. Machine Intelligence, vol. 20,
no. 3, pp. 226-238, March 1998.

[20] [T. Clouqueur, P. Ramanathan, K. Saluja and K-C. Wang, Value-
Fusion Versus Decision-Fusion for Fault-tolerance in Collaborative
Target Detection in Sensor Networks, 4th Int. Conf. Information
Fusion , Montreal , CA.

[21] A. D’Costa and A. M. Sayeed, “Data Versus Decision Fusion in
Wireless Sensor Networks,” to be presented at ICASSP 2003.

[22] F. Zhao, J. Shin, and J. Reich, Information-Driven Dynamic
Sensor Collaboration, IEEE Signal Processing Magazine, pp. 61-72,
March 2002.

[23] J. Moore, T. Keiser, R. R. Brooks, S. Phoha, D. Friedlander, J.
Koch, A. Reggio, and N. Jacobson, “Tracking Targets with Self-
Organizing Distributed Ground Sensors,” 2003 IEEE Aerospace
Conference, Invited Paper, March 2003.

[24] J. Kittler, A method for determining class subspaces, Information
Processing Letters, pp. 77-79, June 1977.

