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Abstract—The highly distributed infrastructure provided by 
sensor networks supports fundamentally new ways of 
designing surveillance systems. In this paper, we discuss 
sensor networks for target classification and tracking. Our 
formulation is anchored on location-aware data routing to 
conserve system resources, such as energy and bandwidth. 
Distributed classification algorithms exploit signals from 
multiple nodes in several modalities and rely on prior 
statistical information about target classes. Associating data to 
tracks becomes simpler in a distributed environment, at the 
cost of global consistency. It may be possible to filter clutter 
from the system by embedding higher-level reasoning in the 
distributed system. Results and insights from a recent field test 
at 29 Palms Marine Training Center are provided to highlight 
challenges in sensor networks.  
 
Index Terms—Sensor Networks, Classification, Tracking, 
Collaborative Signal Processing, Location Aware Routing 

I. INTRODUCTION  

Sensor networks are an emerging technology that promises 
unprecedented ability to monitor and instrument the 
physical world [1, 2, 3]. Sensor networks consist of a large 
number of inexpensive wireless devices (nodes) densely 
distributed over the region of interest. Nodes have wireless 
connectivity and are tied to a backbone command network, 
such as the Internet. They are typically battery powered 
with limited communication and computation abilities [4]. 
Each node is equipped with a variety of sensing modalities, 
such as acoustic, seismic, and infrared.  

Many challenges must be overcome to implement 
practical sensor networks. Two critical areas are: (i) 
efficient networking techniques, and (ii) collaborative 
signal processing (CSP) to efficiently process distributed 
information gathered. These problems are interconnected. 
For example, the utility of combining sensed data across 
nodes depends on network characteristics, such as latency. 
However, characteristics of the data exchanged, such as 
volume, affects network performance. 

In this paper, we discuss a CSP framework for target 
classification and tracking in sensor networks. Our 
framework uses location-aware data routing that limits the 
scope of CSP to relevant subset of nodes conserving 
network resources, such as energy and bandwidth. Existing 
centralized algorithms for classification/tracking could be 
adapted for decentralized CSP using location-based 

formulations. However, CSP algorithms need to make 
efficient  use of the sensor nodes’ limited communication 
and computation abilities. The framework presented in this 
paper illustrates one approach for leveraging existing 
tracking and decision-making techniques within the 
constraints of sensor networks. We refer the reader to  
[4,5,6] for related work. 

Thematic Example: Tracking a Single Target. We 
consider as an example tracking a target using a sensor 
network. Subsequent sections elaborate on the component 
problems of data routing, target classification and tracking.  

Each object in the sensor field generates a time-varying 
spatial signature field that is sensed using multiple 
modalities [7]. A moving object is a spatial peak in a 
signature field that moves over time. Tracking a target 
involves tracking the peak location over time. To enable 
distributed tracking, the sensor field is divided dynamically 
into spatial cells. Within each cell, a manager node 
coordinates CSP tasks. 

The approach presented has five basic steps for 
collaborative detection, classification, and tracking of a 
target moving through a sensor field.  
1. Cells near potential target trajectories are put on alert. 

Nodes within cells collaborate to determine if a target 
is present.  

2. When a target is detected, the cell becomes active. If 
classification finds a target of the desired type, tracking 
is initiated.  

3. Tracking includes estimating target location, direction 
and speed for predicting future target positions.  

4. Based on the predictions data from the active cell is 
sent to other cells; alerting them and facilitating CSP. 

5. When the target is detected in an alerted cell that cell 
becomes active and the process repeats. 

II. LOCATION AWARE  ROUTING AND PROCESSING  

Collaborative detection, classification, and tracking require 
data exchange between sensor nodes over an ad hoc 
wireless network with no central coordination of medium 
access. Instead, a fully distributed protocol regulates access. 
Furthermore, the communication range is very limited due 
to energy, size, and environmental constraints. Information 
must be forwarded from node to node to reach nodes 
outside the immediate vicinity.  
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In conventional wireless networks, data is exchanged 
between specific nodes. Even when nodes move, the 
connection remains between the same nodes. In contrast, in 
sensor networks, information exchange is between nodes in 
the same geographic region or concerning data with 
specified attributes. As nodes and targets move, the set of 
nodes involved in exchanges changes to reflect the new 
geographic regions and data attributes. As a result, it is 
widely accepted that traditional Internet Protocol (IP) based 
networking is not suited to sensor networks.  

Data-centric and location-centric networking are 
alternatives to IP for data exchange in sensor networks 
[7,8,9]. In the data-centric approach [9,10], sensor nodes 
publish or subscribe to data with attributes defined in the 
communications request. Other nodes may not immediately 
have the data to respond. They note subscriptions for future 
use. When data whose attributes match the subscription 
becomes available, nodes transmit the data. Subscribed 
nodes receive published data over the network. The 
advantage of the data-centric approach is that no data is 
exchanged before events of interest occur. However, the 
nodes must periodically renew subscriptions, and the 
network must maintain routes from all publishing nodes to 
the subscribed nodes. 
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Figure 1. Location-centric approach for target tracking. 

In the location-centric approach, geographic cells play 
the role of nodes in IP networks [7,8]. Depending on the 
data requests, cells are created and tasked as needed. A 
manager node is created and tasked with coordinating 
activities in the cell as needed. Nodes in cells 
collaboratively decide when events of interest occur. If 
other cells are needed, the manager node creates and tasks 
new cells. For example, consider target tracking in Figure 1. 
A target enters the field and cell 1 forms to track it. Data is 
shared locally and the manager node creates cell 2 to 
maintain surveillance. The manager of cell 2 creates cells 
3a and 3b to continue the track as appropriate, since the 
target may take alternative paths. In Section 3, we will 
discuss how cell sizes can be determined dynamically and 
one example of how data can be shared. All decisions are 
made dynamically with local information. 

Diffusion routing is a solution proposed to efficiently 
route data in the data-centric approach. In diffusion routing, 
nodes exchange two types of control messages, interests 
and reinforcements. Interests are data subscriptions. They 

are diffused to convey node interests. This dissemination 
sets up gradients within the network “drawing” relevant 
data to interested nodes. Data flows to interested nodes 
along multiple paths. The network reinforces paths using 
control messages. Over time, data is sent only along 
reinforced paths [9]. Enhancements to this approach can 
take advantage of location information [10]. 

UW-routing is a location-centric approach developed at 
the University of Wisconsin [8]. Unlike diffusion routing, 
routes are not established and maintained until data needs to 
be communicated. To forward data from cell to cell, a 
Route Request (RREQ) is diffused through the network. A 
cell is addressed by its geographic location and this 
information limits data propagation. Also, as the RREQ 
propagates, state information is temporarily deposited in the 
network to identify an efficient route from source to 
destination cells in a distributed manner. When the RREQ 
reaches a node in the addressed cell, it responds with a 
RREP control message. The RREP message is routed to the 
source cell using the state information from the propagation 
of the RREQ. When the RREP message reaches the source 
cell, a single path to the destination cell is established. This 
path is used to send data from the source cell to nodes in the 
destination cell. In the destination cell, data is diffused to all 
nodes in the cell by the manager node. 

III. TARGET TRACKING  

Centralized tracking [11] using sensor networks is possible, 
but has numerous drawbacks. Sending time series data 
through the network introduces latency and synchronization 
issues. It also consumes energy and network bandwidth, 
while potentially introducing a single point of failure. 
Associating sensor readings to tracks suffers from 
combinatorial explosion when multiple sensors are used. It 
becomes ambiguous when sensors have overlapping ranges, 
disagree, or when multiple targets are present [12]. 
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Figure 2. Flowchart of the processing performed at any 

given node to allow distributed target tracking. 

Figure 2 gives a flowchart of the data flow at each node 
in our distributed tracking approach. Multiple threads 
execute concurrently and the system is a peer-to-peer 
network. All nodes execute the same logic: 
1. Initialization declares node attributes to the  location-

centric network. 
2. Candidate track information describing approaching 

targets is continuously received and stored in 
temporary priority queues. 
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3. Local detection and parameter estimation provide 
inputs to the tracking algorithm.  

4. Detections are merged with the track that best fits the 
current data. Target attributes from the candidate track 
record are projected forward to the time of the current 
detection and compared with the current data. 

5. Confidence threshold is set so that when no candidate 
tracks adequately match the current detection, a new 
track record is created.  

6. Estimate future track from recent information and 
update the track record. 

7. Report track update to user community (outside the 
scope of this paper). 

8. Transmit updated track record to regions along the 
target trajectory. Using multiple regions of varying size 
can provide fault tolerance. Queues containing precise 
regions are considered first.  
Local parameter estimation is done using a location 

centric approach. Closest Point of Approach (CPA) data is 
shared locally. The CPA is a robust statistic and easily 
detected. It corresponds to the signal peak in Figure 4. Cells 
form dynamically within a limited space-time window. The 
manager node is chosen as the sensor node with the 
strongest signal in the space-time window. Linear 
regression using the trigonometry of node locations is used 
to estimate target position, velocity and heading. In the 
numerical results presented below, typically one CPA event 
from each of three modalities of four to five nodes was used 
in this calculation (12 to 15 total). The results in [13] show 
this to be a reliable technique. 

Given local detection information and a list of tracks, 
data association is required to map the detection to a track. 
In the results we present here, we used a simple Euclidean 
metric computing the difference of the last target track 
estimate (position, velocity, and heading) projected forward 
to the time of current detection. In a multi-target tracking 
scenario with n targets and n tracks, [12] states that 
centralized association requires at least n (n-1) 
comparisons. In the distributed case, the manager node is 
the only one performing comparisons. It has one detection 
and at most n candidate tracks (possibly fewer) and thus at 
most n comparisons are required. Hence, the combinatorial 
explosion that exists in the centralized case does not occur. 

When a track is continued, the manager node defines a 
new cell. The cell position encloses the region the target is 
likely to traverse. The cell size is a function of observed 
target velocity. The track information packet is routed to the 
new cell. The tracking process repeats at this point. 

Figure 3 shows example target tracks from a field test 
at 29 Palms Marine Training Ground. Prototype hardware 
easily handled the sensing, processing, and networking 
requirements. Network latency and packet dropping were 
not significant during this test. Due to a microphone 
deployment issue, over 50% of the CPA events detected 
were false positives. The linear regression for velocity 
estimation found no correlation among false alarm CPA’s 
and thus translated false positives into target tracks of zero 
velocity, which effectively removed them from the tracking 
system.   

The left hand image in Figure 3 shows data from the 
software used in that test. The target track diverges and 
continues through only part of the field. To correct these 
deficiencies, various data association and track estimation 
techniques were tested. The middle image shows an 
Extended Kalman Filter (EKF), similar to the one in [14, 
15], added to the track estimation process. It reduced track 
divergence and targets were tracked for a longer distance. 
The EKF implicitly assumes a target with linear motion and 
does not enforce global consistency. 

The right image in Figure 3 shows results using “lateral 
inhibition.” Before continuing a track, nodes whose current 
readings match a candidate track broadcast their intention to 
continue the track. They wait for a period of time 
proportional to the log of their goodness-of-fit metric. 
During this wait, they can receive messages from other 
nodes that fit the candidate track better, in which case, they 
drop their continuation. If no other node has a better fit, the 
node continues the track. In our tests, this approach reduced 
track divergence more than the other approaches. It does 
not assume a linear trajectory and enforces some global 
consistency. 

Table 1 contains error information for the techniques in 
Figure 3. Tracks produced using the EKF appear to be the 
most accurate, with lateral inhibition not being significantly 
worse. Lateral inhibition does have a significant advantage 
in reducing the tendency of tracks to diverge since it does 
not assume any target trajectory. 

RMS for tracks from Nov 08 2001
Live Data EKF Lateral Inhibition EKF & LAT

Averaged 18.108328 8.877021 9.361643 11.306236
Track Summed 81.456893 52.775338 13.535534 26.738410

RMS for track beginning at Nov_08_14.49.18.193_2001
Live Data EKF Lateral Inhibition EKF & LAT

Averaged 14.977790 8.723196 9.361643 8.979458
Track Summed 119.822320 183.187110 18.723287 35.917832  

Table 1. Root mean square error comparison for the data association and track estimation techniques discussed. The top set of 
numbers is for all target tracks collected on Nov. 8, 2001. The bottom set of numbers is for the target run in Figure 3. In each set, 
the top row is the average error for all tracks made by the target during the run. The bottom row sums the error over all the 
tracks. Since these tests were of a target following a road, the EKF filter has an advantage since it assumes a linear trajectory. 
Lateral inhibition still performs well, although it is non-parametric. 
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Figure 3. Tracks of the same single target at 29 Palms. Axes are UTM coordinates. Circles are sensor nodes. The faint curve 
through the nodes is the middle of the road. Dark arrows are the reported target tracks. Dotted arrows connect the manager nodes 
that formed the tracks. From left: no filtering, EKF, and lateral inhibition. 

CPA size 40
Inhibition size 56

Track packets Track pack size CPA packets Inhib. packets Total
EKF 852 296 59 0 254552
Lateral inhibition 217 56 59 130 21792
EKF & Lateral inhibition 204 296 59 114 69128
Centralized 0 0 240 0 9600  

Table 2. Data transmission requirements for the different data association techniques. The total is the number of bytes sent 
over the network. The EKF requires covariance data and previous data points. Angle gating and lateral inhibition require 
less data in the track record. Data is from the tracking period shown in Figure 3.

Table 2 compares the network traffic incurred by the 
approaches shown in Figure 3 with the bandwidth required 
for a centralized approach using CPA data. CPA packets 
had 40 bytes, and the lateral inhibition packets had 56 
bytes. Track data packets vary in size, since the EKF 
required three data points and a covariance matrix. The 
table shows that lateral inhibition requires the least network 
bandwidth due to reduced track divergence. 

Note from Table 2, that in this case centralized tracking 
required less than half as many bytes as lateral inhibition. 
This data is somewhat misleading. The data shown is from 
a network of 40 nodes with an Internet gateway in the 
middle. As the number of nodes and the distance to the 

gateway increases, the number of packet transmissions will 
increase for the centralized case. For the other techniques, 
the number of packets transmitted will remain constant. 
Recall the occurrence of tracking filter false positives in the 
network, which was more than 50% of the CPA’s during 
this test. Reasonably, under those conditions the centralized 
data volume would more than double over time and be 
comparable to the lateral inhibition volume. Note as well 
that centralized data association would involve as many as 
24 to 30 CPA’s for every detection event in our method. 
When association requires O(n2) comparisons [12] this 
becomes an issue. 
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IV. TARGET CLASSIFICATION  

In this section we outline a CSP approach to target 
classification based on node measurements within a cell. 
We discuss fusion of measurements from a purely decision 
theoretic viewpoint, followed by distributed application of 
the fusion techniques in sensor networks, along with the 
associated communication and computation burden. We 
discuss Gaussian classifiers that assume Gaussian data – the 
general fusion principles presented here also apply to 
arbitrary classifiers. Gaussian classifiers exploit only the 
second-order statistics of the (possibly non-Gaussian) data 
and are an attractive choice requiring estimation of mean 
vectors and covariance matrices, instead of arbitrary joint 
probability densities, for different target classes.   

A. Single Measurement Classification 
Event detection. Classifiers operate on feature vectors 
extracted from time series data corresponding to an event. 
Node detection algorithms extract data segments. Energy 
detectors are typically used for event detection. At each 
instant, the detector monitors signal energy in a given time 
window. Events are declared when the energy exceeds a 
threshold. The threshold is dynamically updated based on 
background noise statistics to maintain a constant false 
alarm rate. Once a node detects an event (e.g., the presence 
of a moving vehicle), it stores a time series segment 
corresponding to the event. As illustrated in Figure 4, the 
time series segment is extracted from the interval in which 
the energy first exceeds the threshold (event onset) and then 
drops below it (event offset) due to the target passing by the 
node. The time instant of the maximum reading signifies 
the CPA. Time series data may also be used for target 
localization algorithms (see, e,g. [16, 17]). Simpler 
localization algorithms that exploit energy decay profile are 
also possible [7]. 
 
 
 
 
 
 
 
Figure 4. Illustration of event detection by thresholding the 

energy detector output. The horizontal line represents 
the threshold. The maximum reading corresponds to  
CPA time. 

Lower dimensional feature vectors are extracted from 
time series. Feature vector selection is important as it 
impacts classifier performance [18]. In our work, spectral 
(Fourier) features were used since vehicle signatures exhibit 
dominant harmonic characteristics [7]. Each event yields 
multiple feature vectors that are collapsed into a single 
effective one, the mean, for example. 

Gaussian classifiers.  Let x denote an N dimensional 
complex-valued event feature vector. Suppose there are M 
target classes, },,1{ Mm L=Ω∈ω . We assume each event 
consists of a single target. A classifier C assigns x to one of 
the target classes. We focus on maximum likelihood (ML) 

classifiers corresponding to equal prior probabilities for 
different classes [16]. The ML classifier is given by 

)|(maxarg)(
,,1

j
Mj

PC ωxx
L=

=  which assigns the class with the 

largest likelihood )|( jP ωx  to x. In Gaussian classifiers, the 
feature vectors are modeled as complex Gaussian with 
mean ][xµ jj E=  and covariance matrix ][ H

jj E xxS = , where 

the superscript H refers to complex conjugate transpose and 
[.]jE denotes ensemble average over the j-th class. The 

likelihood function then takes the form 

))()(exp(
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1)|( 1
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H
j

j
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S
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π
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Training and testing. Designing the Gaussian 
classifier corresponds to determining the mean vectors and 
covariance matrices for the different classes. This is done 
from available training data. The training and performance 
assessment is usually done through cross-validation [18] in 
which the available data is split into multiple groups of 
training and testing subsets. For each group, the mean 
vectors and covariance matrices for all classes are estimated 
from the training sets. The estimated parameters are then 
used for assessing the performance of the classifier using 
the testing set. The results of the experiments generate an M 
by M confusion matrix whose elements ijij n=][CM  

represent the number of vectors from iω classified as jω . 
Two performance metrics are typically computed from the 
confusion matrix. The probability of correct detection for 

class m is given by ∑
=

=
M

j
mjmmm nnPD

1
and the probability of 

false alarm is computed as ∑
∑−

=
≠=
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signifies the probability that an event is labeled from class 
m when the true underlying class is different.  

B. Multiple Measurements 
Suppose that multiple measurements are available for each 
event. These measurements may be from different sensing 
modalities at a particular node or from multiple 
measurements at different nodes. Suppose K measurements 
are available. Let kx , k =1, …, K, denote the feature vector 
for the k-th measurement. The classifier now operates on all 
K measurements to decide the class for the event 

),,(maxarg),,(
,,1

j
Mj

PC ω|K1K1 xxxx LL
L=

= . 

The classifier can combine the information from 
different measurements in two ways: 1) Data fusion in 
which the classifier jointly operates on the feature vectors 
of all measurements, or 2) Decision fusion in which the 
classifier combines the decisions of the component 
classifiers for each measurement. From a purely decision 
theoretic viewpoint, the choice between data versus 
decision fusion depends on the statistical relation between 
the different measurements, as elaborated next.  

Data Fusion. If the different measurements yield 
correlated information, data fusion is needed in general for 
best performance. Suppose that, for any given class, the 
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different measurements are jointly Gaussian. That is, for 
class j, the concatenated feature vector [ ]TK

TTc xxx ,,1 L= is 
characterized by the mean vector c

jµ and the covariance 

matrix c
jS . The ML classifier based on data fusion can then 

be designed and tested in the same way as the single-
measurement classifier described in Section IV-A by using 
concatenated feature vectors.  

Decision Fusion. If the different measurements are 
statistically independent, the likelihood function factors as 

)|()|,,(
1

1 j

K

k
kjK PP ωω ∏

=
= xxx L which suggests combining the 

decisions of the component classifiers (for different 
measurements) to make the final decision. Either hard or 
soft decisions may be combined [18, 19]. We limit our 
discussion to soft decision fusion. There are a variety of 
possibilities for decision fusion, all of which stem from 
successive bounds for the factored likelihood [19]. The sum 

rule is robust [19]: 







= ∑

==

K

k
jk

Mj
K PC

1,,1
1 )|(maxarg),,( ωxxx

L
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Other rules based on the median, minimum or maximum of 
the component likelihoods may also be used. Multiple 
measurement classifiers based on decision fusion can be 
designed from training data by estimating the mean vectors 
and covariance matrices for component classifiers as 
described in Section IV-A.  

C. Different Forms of CSP in Sensor Networks 
We now discuss the application of decision and data fusion 
of multiple measurements in sensor networks. As 
mentioned earlier, multiple measurements may be from 
different modalities at a single node or from different 
modalities at different nodes. We consider a single cell 
consisting of P nodes. Each node can sense in K different 
modalities. Let kp ,x denote an event feature vector for the k-

th modality at p-th node, and let kpC ,  denote the 
corresponding component classifier. For concreteness, we 
consider K=2 modalities and P=3 nodes with the third node 
being the manager node. Let C denote the overall CSP 
classifier at the manager node. We discuss various CSP 
classifiers in the order of increased communication and 
computational burden on the network. 

Single Node Multiple Modality (SN, MM). This is 
the simplest form of CSP since it is limited to data in 
multiple modalities at a single node (no communication 
burden). The final classifier takes the form 

mCCC →))(),(( 2,12,11,11,1 xx  for decision fusion and 
mC →),( 2,11,1 xx for data fusion. The latter imposes a higher 

computational burden since it involves KN dimensional 
joint processing as opposed to N dimensional component 
processing in the former. 

Multiple Node Single Modality (MN, SM).  This 
form of CSP involves higher communication burden since 
data or decisions from P nodes are shared. The final 
classifier is of the form mCCCC →))(),(),(( 1,31,31,21,21,11,1 xxx  for 
decision fusion and mC →),,( 1,31,21,1 xxx for data fusion. 
Decision fusion entails communication of P-1 decisions to 

the manager node that jointly processes the P component 
decisions. Data fusion involves communication of N 
dimensional event feature vectors from P-1 nodes to the 
manager node that jointly processes the PN dimensional 
concatenated feature vector. 

Multiple Node Multiple Modality (MN, MM). This 
is the most general form of CSP that entails the highest 
communication and computational burden. In this case, 
various forms of CSP are possible.  
a) Decision fusion across modalities and nodes. The final 

decision is given by mCCCC →••• ),,( ,3,2,1 where 
),( 2,1,,, pppp CCCC •• ≡  denotes the component decision at p-

th node formed by fusing the decisions of classifiers for 
the K (=2) modalities at that node. This sub-case entails 
the least communication and computational burden since 
only decisions need to be communicated to and processed 
by the manager node. 

b) Data fusion over modalities and decision fusion over 
nodes. The final decision is given by mCCCC →••• ),,( ,3,2,1  
where ),( 2,1,,, pppp CC xx•• ≡  denotes the component 

decision at p-th node formed via data fusion over 
modalities at that node. Compared to the last sub-case, 
this one entails higher computational burden at individual 
nodes. One possibility, intermediate to the above two 
sub-cases, is in which data fusion is performed over 
nodes in modality 1 and decision fusion in modality 2. 
The final decision is given by 

mCCCCCC →•• )),,(),,,(( 2,32,22,12,1,31,21,11, xxx .  
c) Data fusion over modalities and nodes. The final 

decision is mC →),,,,,( 2,31,32,21,22,11,1 xxxxxx which entails 
the highest communication and computational burden 
since K, N-dimensional event feature vectors are 
communicated from each of the P-1 nodes to the manager 
node that jointly processes the final PKN dimensional 
concatenated event feature vector. Note that if the 
measurements at different nodes and in different 
modalities are independent, this sub-case reduces to a).  

Numerical Results.  We briefly present some (MN, 
SM) numerical results using data collected in field 
experiments of the DARPA SenseIT program. The results 
are based on N=50 dimensional FFT features derived from 
acoustic measurements. Classification between wheeled 
versus tracked vehicles is performed. The tracked data 
corresponded to Amphibious Assault Vehicle (AAV) 
whereas the wheeled data corresponded to Dragon Wagon 
(DW) and Humvee (HV) vehicles. Concatenated and 
component covariance matrices for the two classes were 
estimated at three nodes within a cell from training data 
collected during the experiments. Due to limited training 
data, synthetic test data for the three nodes was then 
generated using the eigenvalue decomposition of the 
estimated correlation matrices and white Gaussian 
background noise was added to yield an SNR of 20dB. This 
experiment tests the ability to classify the vehicles based on 
second-order statistical information in the available data. 
The confusion matrix for the single node classifier (that 
operated on 50 dimensional feature vectors) is: 
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SN Dec. = wheeled Dec.=tracked 
Class=wheeled 337 163 
Class= tracked 120 380 
which yields PD = 0.67, 0.76 and PFA = 0.24, 0.32 for the 
two classes (Average PD = 0.72). The confusion matrix for 
the data fusion classifier is: 
MN – data fusion Dec. = wheeled Dec.=tracked 
Class=wheeled 396 104 
Class= tracked 83 417 
which yields PD = 0.79, 0.83 and PFA = 0.17, 0.21 for the 
two classes (Average PD = 0.81). The confusion matrix for 
the decision fusion classifier (sum rule) is: 
MN – dec. fusion Dec. = wheeled Dec.=tracked 
Class=wheeled 342 158 
Class= tracked 63 437 
which yields PD = 0.68, 0.87 and PFA = 0.13, 0.32 for the 
two classes (Average PD = 0.78). As evident, data fusion 
performed the best with decision fusion in between single 
node and data fusion. In particular, the decision fusion 
classifier performs nearly as well as the data fusion 
classifier but with significantly lower communication and 
computational burden. The data fusion classifier requires 
communication of 50 dimensional vectors from each node 
to the manager node, compared to the communication of 
scalars (decisions) in decision fusion. Furthermore, the data 
fusion classifier computes 150 dimensional quadratic forms 
of the concatenated feature vector, whereas the decision 
fusion classifier simply uses the sum of the three scalar 
decisions.   We direct the readers to [7] for the performance 
of other types of classifiers on real data. 
Pros and Cons of Data versus Decision Fusion 
1. Decision fusion is preferable due to lower 

communication and computational burden. It also 
requires lesser amount of data for training. This is 
particularly important when limited training data is 
available as it enables more accurate estimation of 
classifier parameters (covariance matrices). 

2. Data fusion can potentially yield the best performance 
at the cost of higher communication and computational 
burden if measurements are sufficiently correlated. 

3. Data fusion across modalities (no communication 
burden) and decision fusion across nodes is attractive.  

4. Decision and/or data fusion may not yield sufficient 
improvement in performance if inconsistencies 
between multiple measurements are present, such as 
due to malfunctioning nodes. Some recent results 
indicate that decision fusion might perform better in 
such a fault-tolerant context [20]. 

5. Measurements yielding complementary performance 
should ideally be combined. For instance, modalities 
M1 and M2 may both be effective for classifying AAV 
versus DW but not AAV versus HV, whereas modality 
M3 may be useful for classifying AAV versus HV. 
Combining M1 and M3 (or M2 and M3) would likely 
be more beneficial than combining M1 and M2.   

 
In general, measurements from different nodes within a cell 
will exhibit a combination of dependent (correlated) and 
independent (uncorrelated) components. The optimal 

classifier performs data averaging over the correlated 
components to improve the effective signal to noise ratio 
(SNR) and decision averaging over uncorrelated 
measurements to reduce the inherent statistical variation in 
the signal.  Some recent work shows that for targets 
modeled as zero-mean stochastic (Gaussian) signals, the 
decision fusion classifier incurs a relatively small loss in 
effective SNR compared to the optimal classifier even in 
the presence of correlated measurements [21]. Thus, the 
decision fusion classifier, which is clearly the attractive 
choice in view of the communication and computational 
burden, is also a robust choice from a decision theoretic 
viewpoint. 

V. ISSUES AND CHALLENGES  

We presented CSP methods for target classification and 
tracking in distributed sensor networks. These algorithms 
exploit multiple sensing modes gathered at different nodes. 
Significant savings are possible in power and bandwidth 
consumption by processing time series locally. Significant 
information can be distilled from the time series. Location 
aware routing limits data distribution to regions directly 
affected by the data. Results based on field tests show these 
approaches are feasible. Further research is needed to 
determine the operational limitations of these approaches. 

As CSP techniques often rely on prior statistical 
information about the signals, an overriding challenge is to 
make CSP algorithms robust and/or adaptive to variations 
in environmental conditions that can significantly influence 
statistical signal characteristics [7]. For example, the 
presence of a strong wind can radically influence acoustic 
measurements. Similarly, different vehicle operating 
conditions, such as gearshifts and acceleration must also be 
taken into account. Finally, the effect of Doppler shifts can 
also be quite pronounced in acoustic and seismic 
measurements due to the relatively slow speed of wave 
propagation in such modalities [7]. 

The choice between decision versus data fusion 
depends on the statistical correlation between different 
measurements. Thus, algorithms for determining the subset 
of nodes for data versus decision fusion could significantly 
enhance the efficiency of CSP algorithms. One simple 
approach may be based on the observation that feature 
vectors from different nodes provide snapshots of the target 
signal at different times. Thus, nodes in close proximity 
will be highly correlated, whereas sufficiently spaced nodes 
will be weakly correlated. A simple measure of the degree 
of correlation between nodes could be derived from the 
knowledge of the bandwidth of the target signal and the 
location of the nodes relative to the target (e.g., a stationary 
stochastic signal decorrelates after a time interval inversely 
proportional to its bandwidth). Recent work on a related 
topic is reported in [22].   

Tracking results indicate that using laterally inhibited 
distributed tracking is currently about as efficient as 
centralized tracking in network resource consumption. 
Lateral inhibition is simpler computationally and scales 
better. In large-scale networks it is likely to be the better 
alternative. Work still needs to be done on optimizing 
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packet and cell sizes.  Work is also needed to fully realize 
the ability of the distributed system to support target classes 
with different dynamics and maintain multiple track 
hypotheses [23]. 

Finally, the classification and tracking algorithms 
presented here primarily apply to a single target or multiple 
targets that are separated sufficiently in space and/or time. 
Tracking multiple closely spaced targets is a challenging 
problem that relies on classification algorithms. Single-
target classification algorithms can be extended to deal with 
multiple targets. A key problem is the interference between 
signals from different targets. In a multiple target classifier, 
each component classifier for a particular target class must 
also suppress interference from targets from other classes. 
Subspace-based methods may be leveraged in this context 
(see, e.g., [24] and references therein). 
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