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Abstract — Collaborative signal processing algorithms inthree, namely sensing, processing, and communication ca-
sensor networks must be robust to device failures becaybilities of these micro sensors. When performing a target
one expects a large number of failures due to the harsh catetection task, multiple sensors in a region detect the pres-
ditions in which they are usually deployed. In this paper, wence of an object using sound, motion, or heat associated
study two distinct approaches, value-fusion and decisiowith the object of interest. The sensors may exchange in-
fusion, for achieving fault-tolerance in collaborative targeformation about the presence or absence of the object or
detection algorithms. In value-fusion, sensor devices firshergy level associated with the object and after perform-

exchange their measured values to arrive at a fault-toleraimg collective signal processing, may reliably determine the

consensus on the measurement. Then each device maladsre of the object and arrive at a common conclusion. Be-
an independent decision as to whether or not a target liew we describe a wireless sensor network architecture that
present based on the consensus measurement. In contiadteing developed in the SensIT program to support these
in decision-fusion, each device first makes an independebjectives.

decision as to whether or not a target is present and then

the devices exchange their decisions to arrive at a fault- e S ®

tolerant consensus decision. In this paper, we compare the e e ° * o
performance of value and decision fusion using two me‘ * . o ° .
sures: probability of correct detection and probability o —X e’ e e
false alarm. The results show that if fault-tolerance is not e ® o ° 0%
required, then value-fusion is better than decision-fusion o ° o oo ®
and whereas if fault-tolerance is essential, then decision- o * ° . .
fusion is better than value-fusion. o ° .

Keywords: Collaborative signal processing, data fusion,
decision, fault tolerance, sensor network. Figure 1: Wireless sensor network

. The basic micro sensor network system is shown in Fig-

1 Introduction ure 1. In this figure, each black dot represents an inexpen-
sive microsensor with positioning, multiple sensing, pro-

Wireless devices are becoming an integral part of electromiessing, and communication capabilities. Consider a task
systems in everyday use. Today’s wireless devices are mesigned to the sensors in region R to collectively make a
just the cell phones, but can be intelligent and smart dgecision about the presence of an object in this region. The
vices with sensing, processing and communication capatsiénsors using their varied sensing capabilities can make a
ities. Such devices may consist of communication modulesllective decision using one the following two alternatives.
using wireless technologies such as bluetooth [2] or IEEB Each sensor may make its independent decision using its
802.11 standard [5]. They may also contain special pown measured values and then sensors may exchange their
pose sensors and processors as in the case of SensIT gegisions among each other to arrive at a consensus by fus-
gram [8]. These small and smart devices termesemsors ing all decisions. 2) All sensors exchange their measured
or microsensorscan form networks and collectively per-values and then each sensor makes its own individual and
form tasks that no single device may perform by itself. Exadependent decision by fusing the collected values. We
amples of such tasks include detection, classification, acall the first methodiecision fusiorand the second method
tracking of an object in a region. Such tasks may use athlue fusion



Value Fusion Decision Fusion

Comparative study of these two methods of fusing infor-

mation is the focus of this paper. In particular, we com- @ @ @ @ @ @

pare these two methods for theiccuracyunder the fol- ,F,us;qq,,,,,, 9@9’””‘ 7777777 I 7777777 L 7777777 I
fault free and 2) some of the sensors may be faulty. Note @ @ @ @ @ @ @ @
that in the second case, faulty sensors may provide incggs,, 1 7777777 | Fson }\é%'ggq

network. We must add that the two approaches can also be @ @ @ @ @ @ @

compared using other parameters such as power consump-
tion, the number of message exchanges, or the commulgi- ) .
cation bandwidth required to arrive at consensus. Howev foure 2: Two approachgs for fu5|on: The grey sensors are
X X : Faulty and have indeterminate behavior.
these are not the subject of this paper. Some of these pa-
rameters have been studied in literature [1, 9].
This paper is organized as follows. In section 2, Wgecide using the set of decisions.
present the system model and introduce the metrics use§vhen collaborating, the decision made by the sensors
to assess the collaborative detection algorithms. SeCtiO@a"}] be Corrupted by fau|ty sSensors present inthe region_ We
describes the algorithms for value and decision fusion fgescribe in the next subsection the type of faulty behavior

fault free and faulty systems. Section 4 introduces the sigssumed in this study and a solution that can be adopted to
ulator used to evaluate performance of the algorithms agflerate such behavior.

section 5 presents the simulation results. The paper con-
cludes with section 6.
2.2 Fault model

The network considered is likely to contain some faulty
2 SyStem model and prOblem formu- sensors due to harsh environmental conditions. The behav-
lation ior of faulty sensors is assumed to be arbitrary or malicious,
e.g. they can send incorrect information and can even be in-
In this section we introduce the model of sensor netwoglensistent when sending information to different sensors as
used for target detection as well as the fault model and mehown in Figure 3.
rics used to evaluate the system performance.

2.1 Network model

As mentioned in section 1, we assume that a set of sensors
deployed in a regiorkz, shown in Figure 1, is to determine /1

10

if a specified target is present or not in the region. To detect
the target, each sensor can measure an energy level that is
a function of its distance to the target and the background
noise. We assume the noise to be Gaussian with zero mean
and independent at different sensors. We also assume that
sensors can communicate with each other. The goal of the
detection algorithms is to estimate if a target is present or
not in a region. This requires collaboration among the sen- Figure 3: Byzantine faulty behavior
sors deployed in the region since sensors have only a lim-
ited perception of the complete region. For example, if the Four sensors (A, B, C and D) are deployed in the region
target lies in the corner of the region or in a neighboring ras a target object is present in the neighboring region. Sen-
gion, it may be detected by a small subset of all sensorssor A measures an energy level of 1.4 (including noise)
the region. However, the final decision for the region needshereas sensor B and D measure an energy level of 0.5
to be “present” in the first case and “absent” in the secomeid 0.1 respectively. Sensor C is assumed to be faulty and
case. The all set of sensors can come to this decision osgnds different measurements to the other sensors (10, 1
by fusing their information into a global description of theand 10 to A, B and D respectively). As a result, non faulty
region. sensors obtain different pictures of the region and may con-
The two approaches proposed to solve this problem alede differently on the presence of the target (e.g. sensor
value fusion and decision fusion. These approaches arefiland D may conclude that a target is present while sensor
lustrated in Figure 2. In value fusion, sensors communicd®econcludes that no target is present). This faulty behavior
their energy measurement values to each other and decégleeferred as Byzantine [6]. In the presence of such faults,
using the sef5 of all values whether a target is present iagreement needs to be performed for all the non faulty sen-
the region. In decision fusion, each sensor makes a decissams to arrive at the same final decision. Numerous studies
first by using its own energy measurement value, the sérave been conducted on agreement and it is proven that to
sors then communicate decisions to each other and finakyach agreement in the presenceroByzantine faulty sen-
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A B C D an object given that there is no object in the re-

Value 1.4 0.1 ? 0.5 gion.

Value h : ity .

received 10.0 1.0 } 10.0 T g_detectlon probabilitys the conditional prob-

from C ability that the sensors report the presence of an

Set S object given that there is an object in the region.

after 1.4 1.4 1.4

exact 0.1 0.1 > 0.1 3 Algorithms

agree- 10.0 10.0 10.0

ment 0.5 0.5 0.5 In this section, we describe the target detection algorithms
used for value fusion and decision fusion in the absence and

Final in the presence of faults, respectively.

decision 1 1 ? 1
3.1 Value fusion algorithms

Table 1: Example of exact agreement on values, sensof{yalue fusion, the sensors in the network exchange their

being faulty local energy values and fuse them by finding the average.
The final detection decision is made by comparing this
final value to a thresholg,. The algorithm for value fusion

sors, the network must contaisi > 3m + 1 sensors [6]. in the absence of faults (Alg VNFS) is described below.

In this paper, we use the exact agreement algorithm devgel- :
oped br))/ If)amport et al. in [6]. Tgis algorithrraJ guarantee@Value fusion - no faulty sensors (VRFS)
that when exchanging values, all the non faulty sensors Oag_eacmode[ .
tain the same set of values and all the values sent by norﬁ:ompute energy,.

faulty sensors are part of this set. Inconsistent values Sen?xchange values; )

by faulty sensors are replaced by a majority vote or a de_compute average of values; ' .
fault value. An example of exact agreement performed peompare average to threshajdfor final decision;
the four sensors of Figure 3 is presented in Table 1. Aftér
exact agreement is performed, inconsistent values sent_ltn/ ts of all tain inde-
sensor C are replaced by a common value (i.e. 10.0). Note: ENergy measurements of all sensors contain inde

. . . - endent Gaussian noise with zero mean and variaf
that in this example, the final decisions of the non faul he average of such noise ovﬁfrz gensiars ias g GZUZS?Sn
sensors are incorrect but they are consistent. 9

zero mean noise with varianee’/N [4]. Therefore,
provided thatN is large enough, the fused value has a
low noise and simple comparison to a threshold gives an
accurate decision.

The performance of the algorithms can be measured inln the presence of faulty sensors, extra steps must be
terms of precision and accuracy [3, 6]. As shown in thedded to the fusion algorithm to achieve precision and
previous subsections, sensors need to fuse their valueg@ouracy. As mentioned in the previous section, we use
make a decision representative of the complete region afct agreement to achieve precision in the system. Exact
faults can lead to inconsistent fused values obtained at diffreement guarantees that all the non faulty sensors obtain
ferent sensors. Precision measures the closeness of diig-same sef of values and the values sent by the non
sions from each other, the goal being that all non faulf@ulty sensors are part of this set. However, consistent
sensors make the same decision. Accuracy measures looitlying values can remain in the set, as shown in Table 1.
well sensor values represent the environment, the goal Be-prevent corruption of the decision by these outliers, the
ing that the decision of non faulty sensors is “0” whenevéargestm and smallesin values are dropped from the set
the target is absent and “1” whenever it is present. Noteand the average value is computed over the remaining
that we have no control on the decision made by faulty sei\- — 2m values. The algorithm for value fusion in the
sors. The algorithms developed for fusion in the presencessence of faults (Alg VIFS) is described below.

faults use exact agreement to solve the inconsistency prob-

lem. Therefore, all the sensors obtain the same set of valllegalue fusion - faulty sensors (VFS)

or local decisions and make the same final decisions agideachnode

both approaches for fusion have perfect precision. On thecompute energy;

other hand, the accuracy is not perfect and is measured bgxchange values with exact agreement;

the false alarm probability and the detection probability as drop largestn and smallestr values;

defined below. compute average of remaining values;

compare average to threshajdfor final decision;

2.3 Performance metrics

The false alarm probabilityis the conditional }
probability that the sensors report the presence of



Since the fused value is the average ovér— 2m decisions sent byn faulty sensors in the absence of a
values, lower accuracy is expected from the fault toleratatrget result into a “detect” final decision, whatever the
value fusion than the non fault tolerant value fusiomecision of non faulty sensors are, and therefore the false
Furthermore, many meaningful values may get droppathrm probability is one, which is undesirable. We found
(e.g. the high energies measured by the sensors clogkat best performance was obtaineddot .43.

to the target). Therefore, more sensors need to detect the

target for the system to make an accurate decision. Thus, ) .

the SNR must be higher to obtain similar performance with Simulator design

faults as without faults. _ _ . _
We used simulation to compare value and decision fusion

under various environmental conditions such as varying
3.2 Decision fusion algorithms number of sensors, varying SNR, and varying number of
. ) ) faulty sensors. The sensors are assumed to be evenly dis-
In decision fusion, the sensors in the network make a 10Gak, 1o over a region of sizé x 4, the distance unit being
decision on the presence of the target by comparing thgig, undefined, and the energy measured by seassra

own energy measurement to a threshgld Then they _function of its distance to the target objelct as defined by
exchange their local decision and fuse them by averagings following equation:

The final detection decision is made by comparing this

fused decision to a threshold The algorithm for value K
fusion in the absence of faults (Alg DRFS) is described B(di) = m (1)
below.
where K is the maximum energy at the target object. For
// decision fusion - no faulty sensors (INFS) our energy model to be valid for very small, we used the
at eacmod¢ term (1 + ;) in the denominator. Note that the constant
compute energy; 1 is relative to the distance unit and for large distanégs
compare toy, to arrive at a local decision; 1+ d; ~ d; and the energy model becomes similar to the
exchange decisions; standard energy models for signal transmission [7]. The
compute average of local decisions; zero mean Gaussian noise is generated with variahce
compare average o for final decision; 1 and the SNR is defined as the peak SNR at the target
} object.

As in value fusion, the fused data is obtained by av- gy R = 1010g10(l—é) =10logyo(K) (dB) (2)
eraging data received from all the sensors. Different values o

of « lead to different performance in term of detectiofhe Byzantine faulty behavior is generated as follows. In
p.I’ObabI.“ty for constant false alarm probability. Throughe apsence of target, faulty nodes report a high value and
simulation, we found that the best performance wefg the presence of target in the region, they all report a low

achieved whem = 1/N. That means that the finalygiue. To compare value fusion and decision fusion, we
decision is “detect” as soon as one of fliesensors reports measuyred the detection probability for constant false alarm
a detection. rates. This requires first to find the adequate thresholds to

In the presence of faults, exact agreement is useddBtain a given false alarm probability and then use these
achieve precision In the ;ystem. Hoyvever, as OPDO_Sﬂ?ﬁesholdsto measure the detection probability. Finally, the
to value fusion, no data is dropped since the corrupti@fmulation results are averaged over a large number of iter-

capability of the faulty sensors is limited to sending wrongtions to obtain 80% confidence that the results are within
binary decisions. The algorithm for decision fusion in th@gos, of the mean values.
presence of faults (Alg DFS) is described below.

/I decision fusion - faulty sensors (DFS) 5 Comparative performance

at eacmod¢
compute energy; We now present simulation results for the detection algo-
compare toy, to arrive at a local decision; rithms proposed without and with faults in the system.
exchange local decisions with exact agreement;
compute average of local decisions; 5.1 Without faulty sensors
compare average to for final decision;

} Figures 4 and 5 show the relative performance of the two

algorithms for 4, 25 and 49 sensors and varying SNR be-
The value of the second threshotd needs to be in- tween 5dB and 19dB. The graph of Figure 4 is derived for a
creased compared to the non faulty case. Indeedn asfalse alarm probability of 3% and the graph of Figure 5 for
sensors out ofV can be faulty, the final decision cannot false alarm probability of 8%. We notice that detection
rely on fewer thann sensors and must be betweem/N probabilities increase as the SNR increases and detection
and(N — m)/N. For example, itx < m/N, the incorrect probabilities are higher when the false alarm probability is



Variable SNR, false alarm=3%

value and decision fusion when = t = |21 |. The per-

1 ‘ formance for 4, 25 and 49 sensors as a function of the SNR
09l 49 sensors | is presented in the graphs of Figure 6. The thresholds are
set to obtain a constant false alarm probability of 3% and
0.8 1 the graphs show that decision fusion performs consistently
- o7 | better with 4, 25 or 49 sensors in the system. The same be-
% ' havior was also observed when comparing the two methods
S 06 {1 with a higher false alarm probability of 8%, but the graphs
s are not shown here.
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8% as opposed to when it is 3%. As far as comparing tl Y
two methods of fusion, the graphs show that decision fi  0.2r / Y/ 8
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sion and value fusion perform almost equally when the ol 7 |
are only four sensors in the region of interest. Howeve ' R / 4 Sensors
value fusion is substantially better when sensor density olL—e = ‘
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5.2 With faulty sensors

Figure 6: Fault Tolerant Algorithms witln = ¢ = | Y=L |
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Figure 7: Fault Tolerant Algorithms witm = [ %=1 | and

Two parameters specify the simulation system in the pregriablet

ence of faults:m, the number of faulty sensors that the

algorithm can tolerate; and the number of faulty sensors Our second simulation measures the effect of the num-
actually present in the system. In all the simulation runber of faulty sensors present on the performance when try-
0<t<m< L%J. We first evaluate the performance ofng to tolerate as many faulty sensors as possible. Thus,



Variable number of faults t=m SNR= 16dB 6 Conclusion

I g o ‘ ‘ —o— Value fusion ] . .
ool % e _« Decision fusion In this paper, we studied the problem of collaborative target
' N detection in a sensor network without and with faulty sen-
0.8F "\ X 1 sors. We introduced and compared two methods for fault
o tolerant data fusion, namely value fusion and decision fu-
2077 ’ \‘\ 49 sensors | sion. Comparison of the two methods is presented under
§ 0.6 X\ | various environmental conditions and we study in particu-
3 X N lar the effect of the number of faulty sensors in the system
o 0.5f \ y 1 onthe fusion performance.
2 oal ' ' | Our simulation results show that value fusion is supe-
2~ 25 sensors rior to decision fusion when the sensor network is highly
O o3t | ' reliable and fault free. However, as faulty sensors are in-
\ N troduced in the system, the performance of value fusion de-
0.2 X N 1 grade faster than the performance of decision fusion and
01F . X | decision fusion becomes superior to value fusion.
\
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