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Abstract--OLSR (Optimal Link State Routing) is one of 
the four base routing protocols being considered for use 
with MANETs (Mobile Ad hoc Networks) by the IETF’s 
MANET working group.  OLSR belongs to the proactive 
class of routing protocols in which the connection setup 
delay is minimized at the expense of heavier control traf-
fic load on the wireless channel.  Existing IETF draft 
proposals on OLSR do not yet address security issues.  
Although a PKI (Public Key Infrastructure) based secu-
rity is deemed more appropriate for MANETs including 
OLSR MANETs, care should be taken to ensure that 
such an infrastructure does not add to the already heavy 
control traffic load in OLSR and, as much as possible, 
the existing OLSR control packets are utilized to support 
such infrastructures as well. 
In this paper we describe our approach in which a PKI  
is tightly coupled with an OLSR MANET at the network 
layer level and the OLSR control packets are leveraged 
to support various security related activities as well.  We 
have implemented a fully distributed CA (Certificate 
Authority) and integrated it with an existing implemen-
tation of OLSRv4 (OLSR for IP version 4).  Intricate 
details of our implementation are presented to develop 
insight into key aspects of the proposed solution. 

Keywords—Security; Mobile Ad-hoc Networks; OLSR; 
Public Key Encryption; Distributed Certificate Authority. 
 

I.     INTRODUCTION 
 
     The Mobile Ad-Hoc Networks (MANETs) are 
autonomous systems of mobile nodes (handheld user 
devices) interconnected by wireless links.  Instead of 
using fixed base stations or access points, intermediate 
mobile nodes in the MANET act as mobile routers to 
support connectivity to other mobile nodes that are out 
of each other’s range.  The mobile routers are free to 
move randomly and organize themselves arbitrarily.  
This inherent flexibility allows for ease of deploy-
ment.  Originally conceived for mostly military pur-
poses, the inherent flexibility that these networks offer 
is also appealing to various commercial applications 
such as convention meetings, electronic classrooms, 
and search-and-rescue etc.  A side effect of this flexi-
bility is the ease with which a node can join or leave a 
MANET.  Lack of any fixed physical and, sometimes, 

administrative infrastructure in these networks makes 
the task of securing these networks extremely chal-
lenging.  Novel schemes are desired to block unau-
thorized nodes from joining the MANET and to pre-
vent authorized nodes from compromising the security 
of the MANET.  
     Most security mechanisms are either based on 
Symmetric Encryption or Asymmetric (Public Key) 
Encryption.  In symmetric encryption the sender en-
crypts the message using a secret key and the receiver 
decrypts the message using the same key.  The parties 
involved in communication thus must posses the same 
secret key before the communication can begin.  The 
symmetric encryption requires that the communication 
channel over which the distribution of the secret keys 
takes place must be secure.  The public key encryption 
schemes, on the other hand, depend on the use of two 
different, but mathematically related, keys.  Each party 
generates a public/private key pair.  The sender en-
crypts a message using the private key and the receiver 
uses the public key of the sender to decrypt that mes-
sage.  Again, the involved parties require each other’s 
public keys before starting the communication.  Public 
key encryption does not impose as stringent require-
ments as symmetric encryption on the communication 
channel used for the key exchange.  Public key en-
cryption schemes only require an authenticated chan-
nel, as opposed to a secure channel, for the distribution 
of public keys.  A trusted CA (Certificate Authority) is 
typically deployed in the security infrastructure to 
validate the authenticity of the public keys.  Before 
distributing its public key to the intended parties, a 
node requests the CA to authenticate its key.  The CA 
then issues a digital certificate binding the public key 
(contained in the digital certificate) to that specific 
node.  The CA uses its own private key to sign this 
digital certificate.  Any other node with the authentic 
public key of the trusted CA can verify the certificate 
and thereafter use the public key of the node and be 
sufficiently sure that it indeed belongs to that node. 
     A PKI aided by a trusted CA appears to be the most 
promising solution for securing MANETs.  However 
the ease with which nodes may join or leave a 
MANET obviates the fact that the CA functionality 



 

needs to be distributed in the MANET rather than as-
signed to a single node.  A single mobile node func-
tioning as a CA will bring the entire MANET to a halt 
if it moves out of the MANET and also act as a single 
point of failure if it becomes compromised.  Repli-
cated CAs may be used to avoid this security bottle-
neck.  A closer look at this option reveals that it is not 
scalable from administration perspectives and that it 
creates several points of compromise if any CA node 
is compromised.  An ability to distribute the signing 
authority among a large number of MANET nodes in 
such a way that multiple trusted nodes are required to 
coalesce to sign a certificate would be ideal.  Such 
paradigm is a natural adaptation of trust based security 
apparatus prevalent in communities to protect the in-
tegrity of their membership.  Initially there are only a 
few trusted members that collectively authenticate any 
incoming node.  Newcomers are issued certificates 
that are perhaps valid only for a short duration.  The 
nodes that have recently migrated to a MANET are 
thus expected to request for renewal of their certifi-
cates very often.  As the time progresses, the well be-
having nodes are rewarded by extending the expiry of 
their certificates.  The nodes that are observed to have 
violated any rule are denied renewal of their certificate 
thus disabling them from effectively participating in 
communications sessions or other MANET operations.  
The nodes that continue to behave well will eventually 
become trustworthy enough that they are also be-
stowed the responsibility to authenticate future incom-
ing nodes in cooperation with other trusted nodes. 
     Shamir [1] proposed a secret sharing technique that 
allows a secret to be shared among a group of users in 
such a way that at least k out of n shareholders must 
coalesce to reconstruct the secret.  Any group of less 
than k shareholders are not able to deduce the secret 
based on the knowledge of their own shares.  This 
approach was considerably extended by Luo and Lu 
[2] and adopted to develop a fully distributed CA.  
Proactive secret sharing procedures were outlined, 
verified and analyzed by the authors in [3][4].  Al-
though a PKI built upon a fully distributed CA and 
aided by a sound network monitoring system is quite 
appealing from MANET security perspectives, how-
ever, like any other distributed scheme, it requires 
exchange of additional messages between multiple 
participants to accomplish the same task as compared 
to a centralized approach.  Any adoption of such secu-
rity mechanism in MANETs thus must take into ac-
count the additional control traffic load that may get 
injected into the MANETs that are inherently band-
width starved and prone to packet collisions due to 
contention.  This especially is the case with proactive 
MANETs that have substantially heavier control traf-

fic load on the wireless channels as compared to their 
reactive counterparts [5][9][10][11]. 
     In this paper we present our approach to integrate a 
fully distributed CA in a proactive ad hoc routing pro-
tocol named OLSR (Optimal Link State Routing).  
IETF’s MANET working group has identified OLSR 
as one of the four base routing protocols for use in ad 
hoc networks.  The other three are AODV (Ad-hoc 
On-Demand Distance Vector), DSR (Dynamic Source 
Routing) and TBRPF (Topology Broadcast Based on 
Reverse-Path Forwarding) routing protocols.  Our 
approach addresses the concerns of control traffic 
overload by tightly coupling the operations of a fully 
distributed CA at the network layer level.  The exist-
ing OLSR specific packet types, identified in the 
IETF’s draft proposal on OLSR, are used, as much as 
possible, to also support the proposed PKI.  A real 
test-bed has been constructed in which the existing 
implementation of OLSRv4 [12] was utilized and a 
fully distributed CA was introduced.  This is to our 
knowledge the first attempt to address the security 
issues of OLSR.  The paper thus provides valuable 
insight by detailing the implementation and evaluation 
of the proposed approach. 
     Security in MANETs is an active area of research.  
Besides the work of Luo et al., a secure DSR protocol 
was proposed by Hu et al.  in [6].  A secure AODV 
was presented in [13].  None of these approaches em-
ploy threshold cryptography and hence do not render a 
self-securing MANET.  MOCA [8], on the other hand, 
employs threshold cryptography but implements only 
a partially distributed CA.  As it is always possible to 
compromise any authentication system, a sound net-
work monitoring system is always a necessity to facili-
tate blacklisting nodes that are not well behaving.  
Such a network monitoring system has been proposed 
by Marti et al. in [7].  We haven’t yet incorporated a 
monitoring system in our implementation and thus this 
aspect is part of our future considerations.      
     The rest of the paper is organized as follows.  In 
Section II we provide a brief summary of OLSR, its 
control packets and control operations.  We identify 
various security attacks that can impact the integrity of 
OLSR, and point out criterion for defending against 
these attacks.  In section III an overview of threshold 
cryptography is provided to lay proper foundation for 
Section IV that details our approach to integrate a fully 
distributed CA in OLSR.  Finally, Section V makes 
some conclusions and, once again, highlights the main 
contributions of this work.  
 

II.     THE OLSR PROTOCOL 
 
     Consider a MANET in which all nodes use public 
key encryption.  A MANET node vw that wants to 



 

send a message to another MANET node vz will do so 
after encrypting the message using vz’s public key.  
The node vz will decrypt the message using its private 
key.  If the public key that vw used was actually in-
jected into the network by an intruder pretending to be 
vz, then the intruder will be able to decrypt the mes-
sage using its own private key and will have all the 
information that the was intended for vz.  Obviously 
vw needs to ensure that the public key indeed belongs 
to vz.  Each node in the MANET, after producing a 
public/private key pair, is required to send its public 
key to the CA for signing.  The CA will confirm the 
identity of the sender and then create a certificate indi-
cating that the public key specified in the certificate 
belongs to the node identified in the certificate, and 
then digitally sign the certificate using its own private 
key.  An expiry time is also indicated in the certificate.  
Any node vz that wants to receive information from 
another node vw must produce a signed certificate to 
convince vw that the public key specified in the cer-
tificate belongs to vz and that it’s the rightful requester 
of the information.  In short-term MANETs, for ex-
ample a meeting room scenario, all participating nodes 
can exchange their public keys in the beginning.  As 
each node now knows the public keys of every other 
participating node, it will ignore any additional keys 
injected in the network.  Since an intruder cannot in-
ject its own public key into the network and it does not 
have the private key of any other node it cannot eaves-
drop.  However, in long-term MANETs, for example a 
conference scenario that spans multiple days and the 
participants can come and go at will, such a one-shot 
key exchange is not viable.  Moreover a frequent re-
freshing of the keys may also be needed to ensure the 
integrity of keys.  A trusted CA is required to assure 
the authenticity of the keys and their rightful owners.  
Before we describe our approach to implement a 
trusted and fully distributed CA in OLSR, it is impor-
tant to identify salient features of OLSR protocol and 
point out security loopholes to justify such CA.   
     Mobile ad-hoc routing protocols are typically clas-
sified as proactive or reactive.  The reactive protocols 
such as AODV [9] and DSR [10], attempt to discover 
routes only on-demand by flooding a route request in 
the network.  These protocols thus reduce control traf-
fic at the expense of increased latency in finding the 
route to the destination.  The proactive protocols on 
the other hand employ periodic messages to maintain 
topology information.  Some messages are exchanged 
locally for neighbor discovery yet others are sent to 
the entire MANET to propagate the knowledge of to-
pology among all the nodes.  The latency in finding a 
route is thus minimized at the expense of heavier con-
trol traffic. 

     OLSR is a proactive protocol.  Its main functional-
ity is to construct a routing table for each node in the 
MANET.  The OLSR protocol is a variation of the 
pure LSR protocol and is designed specifically for 
MANETs.  The OLSR protocol achieves optimization 
over LSR through the use of MPR (Multi Point Relay) 
nodes.  The MPR nodes are selected and designated by 
neighboring nodes.  Unlike LSR, where every node 
declares its links, only MPR nodes declare links.  
Also, unlike LSR, where each node forwards messages 
for their neighbors, only MPR nodes forward mes-
sages for those neighbor nodes that selected them as a 
MPR node. 
     Each node selects its MPR set of nodes in a way 
that, through them, it can reach all of its two hop 
neighbors.  A node learns about its one-hop and two-
hop neighbors from its one-hop neighbors’ HELLO 
messages.  By exchanging HELLO messages, a node 
finds out which neighbors have chosen it as a MPR.  
The neighbors that select a node as MPR form that 
node’s MPR Selector set.  A TC (Topology Control) 
message is sent periodically by each MPR in the net-
work to declare its MPR Selector set and is used in the 
construction of routing tables.   
     As the existing IETF’s draft on OLSR [5] does not 
specify any security mechanism, numerous opportuni-
ties exist for intruding OLSR nodes (unwanted nodes 
that are running an OLSR daemon) to launch active or 
passive attacks.  Passive intruders could eavesdrop on 
confidential information that is being exchanged over 
the wireless channels.  Our PKI allows the encryption 
of sensitive data.  An active attacker, on the other 
hand, can alter control packets or send incorrect con-
trol packets to compromise the integrity of the routing 
protocol.  For example, an intruding node may broad-
cast its HELLO messages specifying neighbors that 
don’t exist.  This will allow the intruding node to be-
come an MPR because of the way the MPR set is cho-
sen.  Alternatively, an active attacker may simply send 
TC messages claiming to be MPR for nodes it is not.  
As the network depends on the MPRs for routing ser-
vices, an intruder that manages to become an MPR can 
easily launch a black-hole attack.  The black-hole at-
tack occurs when a compromised MPR simply drops 
some or all of the packets it was supposed to forward.  
By using digital signatures, we ensure the integrity and 
authenticate the sender of HELLO and TC messages 
to prevent such attacks.  The authenticated channel for 
key distribution is realized using a trusted and fully 
distributed CA, as explained in the next section.   
     A replay attack can also occur when an attacking 
node listens to packets and then broadcasts the same 
packets.  This attack is possible even when the packets 
are encrypted.  A variation of the replay problem is the 
wormhole problem that involves 2 or more attacking 



 

nodes.  A bi-directional wormhole could be used to 
make another node appear in 2 places of the MANET.  
To address the replay attack will require determining 
if a message arrived too late.  Replay attack is out of 
the scope of our current implementation and has not 
been addressed herein.  However we are in the process 
of enhancing our MANET security infrastructure to 
defend against wormhole attacks. 
     PKI solutions address many OLSR security con-
cerns and only require an authenticated channel for 
key distribution.  This channel is realized by using a 
fully distributed CA.  In the next section the theoreti-
cal foundation of a fully distributed CA is presented to 
provide proper background.  
 

III.     A FULLY DISTRIBUTED CA 
 
     Our fully distributed CA is based on an approach 
described by Luo and Lu in [2].  In this section, we 
briefly describe their approach and point out correc-
tions to their original algorithms.   
     The CA is an RSA key pair with public key pkCA, 
private key skCA, and modulus N.   In the fully distrib-
uted approach, skCA is distributed using Shamir’s Se-
cret Sharing method by embedding skCA as the root of 
a polynomial f(x) =  skCA + a1x +…+ ak-1xk-1.    Each 
shareholder with a unique non-zero identity i receives 
a share Si = f(i) mod N.  With knowledge of at least k 
shares the polynomial can be evaluated by calculating: 
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The secret skCA can be recovered by solving for f(0). 
     Any coalition of k shareholders may sign a message 
by generating a message digest and encrypting it with 
their additive shares which produces a partial signa-
ture: 
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A candidate signature can be generated from k partial 
signatures as: 
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By applying the k-bounded coalition offsetting algo-
rithm, a proper signature SIGN (which is verifiable by 
pkCA) can be recovered.  [2] describes an incorrect 
algorithm, we correct it as: 
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     [2] also suggests an improvement where the sign-
ing coalition can be dynamically chosen by perform-
ing all of the Lagrange calculations on the requesting 
node instead of the serving nodes; thereby allowing 
the coalition to be determined after receiving any k 
replies.  However, the authors make an incorrect as-
sumption that the equations 

Ndigest NlS ii modmod)0(  and Ndigest iilS mod)0(  
are equivalent.  Through our implementation, we have 
found that when using this method there is no guaran-
tee that the candidate certificate will coalesce within 
k  offsets.  Because of the increased computational 
complexity, this alternative method is impractical with 
large RSA keys.  We have notified the authors who 
have acknowledged this error.   
     It is also possible for k shareholders to serve a re-
questing node that has a unique and verifiable non-
zero identity r, its own share by first generating partial 
shares: 

NrlSS iiir mod)(, ⋅=  
A share is thereafter generated by adding k partial 
shares: 
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     When initializing a new node with its own share, 
the requesting node must not know the value of each 
partial share Sr,i or else it can easily determine the 
serving node’s share Si as li(r) is publicly known.  
Therefore, an extra round of communication is re-
quired to shuffle the partial shares Sr,i before these are 
dispatched to the requesting node.  Shuffling is a 
method where each serving node mathematically off-
sets its partial share in such a way that each partial 
share’s original value is not recoverable but the sum of 
all partial shares is still equivalent to a full share. 



 

IV.     THE PROPOSED APPROACH 

Figure 1.  Certificate acquisition process in OLSR  
 

     We assume that the network is initialized with at 
least k shareholders.  A shareholder can be any trusted 
OLSR node including MPRs.  An incoming node 
needs to discover at least k shareholders from whom to 
request a certificate.  As illustrated in Fig. 1, we have 
implemented two provisions for this using current 
OLSR control packets without increasing their length.  
The first is through HELLO messages.  By setting a 
reserved bit in their HELLO messages nodes can indi-
cate if they have partial shares and are willing to pro-
vide service.  These modified HELLO messages only 
identify shareholders that are one hop away.  Since 
there may not be at least k shareholders within the one 
hop distance of a node, we also use TC messages to 
notify the identity of shareholders.  Each MPR uses its 
TC message to announce which nodes in its MPR se-
lector set claim to be shareholders.  These TC mes-
sages are propagated to the entire network and provide 
an effective way to inform every node of all the cur-
rent shareholders.  We modified the TC messages by 
using the reserved section to specify a count C of 
nodes in the MPR selector set, which claim to be 
shareholders; we further sort the list of Advertised 
Neighbor Addresses so that the first C are sharehold-
ers.  When a node receives TC messages, it uses these 

TC messages to build its routing table and at the same 
time builds a table of shareholder nodes (maintaining 
their IP address, which we assume unique and verifi-
able, as well as their distance in terms of hop count).   
 

 
Figure 2.  CREQ dispatch to shareholders 

 
     The node subsequently requests a certificate from 
any coalition of k shareholders, as shown in Fig. 2.  
Our certificate request was designed to conform with 
the X.509 CRMF standard [15] and is shown below. 
 

Certificate Request 
Certificate Request ID 

Validity 
Public Key Info 

Proof of Posession (optional) 
 
     A node chooses a serving coalition of the k  least 
costly (in terms of hop count) shareholders it is aware 
of, and sends a CREQ (Certificate Request) message 
to these serving nodes.  If the node itself is a share-
holder, it may choose itself as one of the members of 
the coalition.  In the best case, a node will choose 
amongst its one-hop neighbors.  In this case, the node 
may send out a single CREQ as a broadcast. 
     Upon receiving a CREQ message, each serving 
node determines whether it wants to serve this request.  
It must check that the requesting node is well behaving 
(not on any blacklists), and that it agrees with the 
specified validity date.  Each serving node, which 
chooses to serve the request, will then generate an 
X.509 compliant certificate [14] based on the request.  
All shareholders generate exactly the same certificate; 
calculate the same digest; apply the same padding al-



 

gorithm [16]; and apply their shares to produce partial 
signatures.   

X.509 Digital Certificate 
Serial Number 
Issuer Name 

Validity Period 
Subject Name 

Public Key Information 
Extensions 

Partial Signature 
 
     The serving nodes return this certificate in a 
CREPLY message.  The requesting node verifies the 
validity of the partial signature on the returned certifi-
cate using verifiable secret sharing techniques as de-
scribed in [2].  If a serving node has returned an inva-
lid partial signature, it is blacklisted and the process is 
repeated with a new coalition.  If any serving node 
fails to reply, then the process must be repeated with a 
new coalition.  Upon receiving k valid replies from a 
coalition, the requesting node extracts the partial sig-
natures, adds them together and applies the coalition-
offsetting algorithm to generate a proper signature, as 
described in the previous section.  This proper signa-
ture replaces the partial signature in one of the re-
turned certificates and the node now has a valid cer-
tificate signed by skCA and verifiable by pkCA. 
 

 
Figure 3.  Partial share acquisition process 

 
     A node can also request its own partial share. As 
illustrated in Fig. 3, the requesting node initiates this 
process by sending a SHUFLREQ message to a coali-
tion. 
 

 SHUFLREQ ::= { 
  Serving IDs (v1, v2, …,vk) 
  Digital Signature 
 } 
 
     Upon receiving a SHUFLREQ, each node in the 
coalition determines whether the requesting node 
should be issued a partial share.  If the node agrees to 
authorize the requesting node, it will generate 
SHUFLFACTORS as necessary. 
 
 SHUFLFACTOR ::= { 
  Recipient node ID, 
  Shuffle factor (encrypted), 
 } 

 
     Each shuffling factor is a random integer value 
encrypted by the recipient node’s public key.  There is 
one shuffling factor required per node pairing in the 
serving coalition; the node with the smaller ID in each 
pairing generates the shuffling factor.  Each node also 
keeps record of the shuffling factors it has generated 
until after it has finished generating the shuffled par-
tial share.  Each agreeing node replies with a 
SHUFLREPLY message. 
 
 SHUFLREPLY ::= { 
  Serving node’s ID, 
  SHUFLFACTORs [0 –k], 
  Digital signature 
 } 
 
     A SHUFLREPLY is sent, regardless of whether we 
generated any SHUFLFACTORs, to enable the re-
questing node to confirm that the entire serving coali-
tion is still available.  Once the requesting node has 
received all k  of these SHUFLREPLY messages, it 
concatenates them without making any modifications 
to their contents and then sends each serving node this 
concatenated list as a SHAREREQ message. 
 
 SHAREREQ ::= { 
  SHUFLREPLYs [k], 
  Digital Signature 
 } 
 
     When a serving node in the coalition receives a 
SHAREREQ message it searches for shuffling factors 
that are addressed for it.  This serving node will now 
generate a partial share Sr,i for the requesting node and 
then shuffle it.  The method we used is that the node 
which generated the shuffling factor will add it to its 
generated partial share and the node which is agreeing 
to the shuffling factor will subtract.  Every serving 
node replies with a shuffled partial share.  These re-
plies must be encrypted otherwise an eavesdropping 
node can determine the share.  The requesting node 
can produce its own share nS  by adding these k par-



 

tial shares.  As each partial share was shuffled by add-
ing and subtracting shuffling factors, the requesting 
node can not determine the value of the individual 
partial shares and, thus, can not determine any serving 
node’s partial share.  Similar to the certificate replies, 
a node verifies each share and black lists nodes that 
return improper shares.  If any node fails to reply, the 
process must be started with a new coalition. 
 

V.     CONCLUSIONS 
 
     An efficient approach to integrate a fully distrib-
uted certification authority in OLSR is proposed.  The 
proposed approach enables an OLSR MANET to 
autonomously self-secure itself without any external 
administration.  The proposed approach minimizes the 
signaling overhead by supporting security at the net-
work layer level.  Existing OLSR control packets are 
utilized to help exchange security information thus 
avoiding additional traffic to support the aforemen-
tioned service.  A real test-bed has been implemented 
to verify the viability of the proposed approach. 
     Future extensions of this work will include bench-
marking the performance of the proposed approach 
using a heavily loaded and larger MANET; securing 
the MANET against wormhole attacks; and generaliz-
ing the proposed approach to accommodate additional 
MANET routing protocols.   
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