

Implementing a Fully Distributed Certificate
Authority in an OLSR MANET

D. Dhillon
RSA Security Inc.

Vancouver, BC, Canada
 ddhillon@rsasecurity.com

T. S. Randhawa
Computer Systems Technology Dept.

British Columbia Inst. Of Tech.
Burnaby, BC, Canada

tejinder_randhawa@bcit.ca

M. Wang, L. Lamont
Wireless Networking Group

Communications Research Center
Ottawa, Ontario, Canada

louise.lamont@crc.ca

Abstract--OLSR (Optimal Link State Routing) is one of
the four base routing protocols being considered for use
with MANETs (Mobile Ad hoc Networks) by the IETF’s
MANET working group. OLSR belongs to the proactive
class of routing protocols in which the connection setup
delay is minimized at the expense of heavier control traf-
fic load on the wireless channel. Existing IETF draft
proposals on OLSR do not yet address security issues.
Although a PKI (Public Key Infrastructure) based secu-
rity is deemed more appropriate for MANETs including
OLSR MANETs, care should be taken to ensure that
such an infrastructure does not add to the already heavy
control traffic load in OLSR and, as much as possible,
the existing OLSR control packets are utilized to support
such infrastructures as well.
In this paper we describe our approach in which a PKI
is tightly coupled with an OLSR MANET at the network
layer level and the OLSR control packets are leveraged
to support various security related activities as well. We
have implemented a fully distributed CA (Certificate
Authority) and integrated it with an existing implemen-
tation of OLSRv4 (OLSR for IP version 4). Intricate
details of our implementation are presented to develop
insight into key aspects of the proposed solution.

Keywords—Security; Mobile Ad-hoc Networks; OLSR;
Public Key Encryption; Distributed Certificate Authority.

I. INTRODUCTION

 The Mobile Ad-Hoc Networks (MANETs) are
autonomous systems of mobile nodes (handheld user
devices) interconnected by wireless links. Instead of
using fixed base stations or access points, intermediate
mobile nodes in the MANET act as mobile routers to
support connectivity to other mobile nodes that are out
of each other’s range. The mobile routers are free to
move randomly and organize themselves arbitrarily.
This inherent flexibility allows for ease of deploy-
ment. Originally conceived for mostly military pur-
poses, the inherent flexibility that these networks offer
is also appealing to various commercial applications
such as convention meetings, electronic classrooms,
and search-and-rescue etc. A side effect of this flexi-
bility is the ease with which a node can join or leave a
MANET. Lack of any fixed physical and, sometimes,

administrative infrastructure in these networks makes
the task of securing these networks extremely chal-
lenging. Novel schemes are desired to block unau-
thorized nodes from joining the MANET and to pre-
vent authorized nodes from compromising the security
of the MANET.
 Most security mechanisms are either based on
Symmetric Encryption or Asymmetric (Public Key)
Encryption. In symmetric encryption the sender en-
crypts the message using a secret key and the receiver
decrypts the message using the same key. The parties
involved in communication thus must posses the same
secret key before the communication can begin. The
symmetric encryption requires that the communication
channel over which the distribution of the secret keys
takes place must be secure. The public key encryption
schemes, on the other hand, depend on the use of two
different, but mathematically related, keys. Each party
generates a public/private key pair. The sender en-
crypts a message using the private key and the receiver
uses the public key of the sender to decrypt that mes-
sage. Again, the involved parties require each other’s
public keys before starting the communication. Public
key encryption does not impose as stringent require-
ments as symmetric encryption on the communication
channel used for the key exchange. Public key en-
cryption schemes only require an authenticated chan-
nel, as opposed to a secure channel, for the distribution
of public keys. A trusted CA (Certificate Authority) is
typically deployed in the security infrastructure to
validate the authenticity of the public keys. Before
distributing its public key to the intended parties, a
node requests the CA to authenticate its key. The CA
then issues a digital certificate binding the public key
(contained in the digital certificate) to that specific
node. The CA uses its own private key to sign this
digital certificate. Any other node with the authentic
public key of the trusted CA can verify the certificate
and thereafter use the public key of the node and be
sufficiently sure that it indeed belongs to that node.
 A PKI aided by a trusted CA appears to be the most
promising solution for securing MANETs. However
the ease with which nodes may join or leave a
MANET obviates the fact that the CA functionality

needs to be distributed in the MANET rather than as-
signed to a single node. A single mobile node func-
tioning as a CA will bring the entire MANET to a halt
if it moves out of the MANET and also act as a single
point of failure if it becomes compromised. Repli-
cated CAs may be used to avoid this security bottle-
neck. A closer look at this option reveals that it is not
scalable from administration perspectives and that it
creates several points of compromise if any CA node
is compromised. An ability to distribute the signing
authority among a large number of MANET nodes in
such a way that multiple trusted nodes are required to
coalesce to sign a certificate would be ideal. Such
paradigm is a natural adaptation of trust based security
apparatus prevalent in communities to protect the in-
tegrity of their membership. Initially there are only a
few trusted members that collectively authenticate any
incoming node. Newcomers are issued certificates
that are perhaps valid only for a short duration. The
nodes that have recently migrated to a MANET are
thus expected to request for renewal of their certifi-
cates very often. As the time progresses, the well be-
having nodes are rewarded by extending the expiry of
their certificates. The nodes that are observed to have
violated any rule are denied renewal of their certificate
thus disabling them from effectively participating in
communications sessions or other MANET operations.
The nodes that continue to behave well will eventually
become trustworthy enough that they are also be-
stowed the responsibility to authenticate future incom-
ing nodes in cooperation with other trusted nodes.
 Shamir [1] proposed a secret sharing technique that
allows a secret to be shared among a group of users in
such a way that at least k out of n shareholders must
coalesce to reconstruct the secret. Any group of less
than k shareholders are not able to deduce the secret
based on the knowledge of their own shares. This
approach was considerably extended by Luo and Lu
[2] and adopted to develop a fully distributed CA.
Proactive secret sharing procedures were outlined,
verified and analyzed by the authors in [3][4]. Al-
though a PKI built upon a fully distributed CA and
aided by a sound network monitoring system is quite
appealing from MANET security perspectives, how-
ever, like any other distributed scheme, it requires
exchange of additional messages between multiple
participants to accomplish the same task as compared
to a centralized approach. Any adoption of such secu-
rity mechanism in MANETs thus must take into ac-
count the additional control traffic load that may get
injected into the MANETs that are inherently band-
width starved and prone to packet collisions due to
contention. This especially is the case with proactive
MANETs that have substantially heavier control traf-

fic load on the wireless channels as compared to their
reactive counterparts [5][9][10][11].
 In this paper we present our approach to integrate a
fully distributed CA in a proactive ad hoc routing pro-
tocol named OLSR (Optimal Link State Routing).
IETF’s MANET working group has identified OLSR
as one of the four base routing protocols for use in ad
hoc networks. The other three are AODV (Ad-hoc
On-Demand Distance Vector), DSR (Dynamic Source
Routing) and TBRPF (Topology Broadcast Based on
Reverse-Path Forwarding) routing protocols. Our
approach addresses the concerns of control traffic
overload by tightly coupling the operations of a fully
distributed CA at the network layer level. The exist-
ing OLSR specific packet types, identified in the
IETF’s draft proposal on OLSR, are used, as much as
possible, to also support the proposed PKI. A real
test-bed has been constructed in which the existing
implementation of OLSRv4 [12] was utilized and a
fully distributed CA was introduced. This is to our
knowledge the first attempt to address the security
issues of OLSR. The paper thus provides valuable
insight by detailing the implementation and evaluation
of the proposed approach.
 Security in MANETs is an active area of research.
Besides the work of Luo et al., a secure DSR protocol
was proposed by Hu et al. in [6]. A secure AODV
was presented in [13]. None of these approaches em-
ploy threshold cryptography and hence do not render a
self-securing MANET. MOCA [8], on the other hand,
employs threshold cryptography but implements only
a partially distributed CA. As it is always possible to
compromise any authentication system, a sound net-
work monitoring system is always a necessity to facili-
tate blacklisting nodes that are not well behaving.
Such a network monitoring system has been proposed
by Marti et al. in [7]. We haven’t yet incorporated a
monitoring system in our implementation and thus this
aspect is part of our future considerations.
 The rest of the paper is organized as follows. In
Section II we provide a brief summary of OLSR, its
control packets and control operations. We identify
various security attacks that can impact the integrity of
OLSR, and point out criterion for defending against
these attacks. In section III an overview of threshold
cryptography is provided to lay proper foundation for
Section IV that details our approach to integrate a fully
distributed CA in OLSR. Finally, Section V makes
some conclusions and, once again, highlights the main
contributions of this work.

II. THE OLSR PROTOCOL

 Consider a MANET in which all nodes use public
key encryption. A MANET node vw that wants to

send a message to another MANET node vz will do so
after encrypting the message using vz’s public key.
The node vz will decrypt the message using its private
key. If the public key that vw used was actually in-
jected into the network by an intruder pretending to be
vz, then the intruder will be able to decrypt the mes-
sage using its own private key and will have all the
information that the was intended for vz. Obviously
vw needs to ensure that the public key indeed belongs
to vz. Each node in the MANET, after producing a
public/private key pair, is required to send its public
key to the CA for signing. The CA will confirm the
identity of the sender and then create a certificate indi-
cating that the public key specified in the certificate
belongs to the node identified in the certificate, and
then digitally sign the certificate using its own private
key. An expiry time is also indicated in the certificate.
Any node vz that wants to receive information from
another node vw must produce a signed certificate to
convince vw that the public key specified in the cer-
tificate belongs to vz and that it’s the rightful requester
of the information. In short-term MANETs, for ex-
ample a meeting room scenario, all participating nodes
can exchange their public keys in the beginning. As
each node now knows the public keys of every other
participating node, it will ignore any additional keys
injected in the network. Since an intruder cannot in-
ject its own public key into the network and it does not
have the private key of any other node it cannot eaves-
drop. However, in long-term MANETs, for example a
conference scenario that spans multiple days and the
participants can come and go at will, such a one-shot
key exchange is not viable. Moreover a frequent re-
freshing of the keys may also be needed to ensure the
integrity of keys. A trusted CA is required to assure
the authenticity of the keys and their rightful owners.
Before we describe our approach to implement a
trusted and fully distributed CA in OLSR, it is impor-
tant to identify salient features of OLSR protocol and
point out security loopholes to justify such CA.
 Mobile ad-hoc routing protocols are typically clas-
sified as proactive or reactive. The reactive protocols
such as AODV [9] and DSR [10], attempt to discover
routes only on-demand by flooding a route request in
the network. These protocols thus reduce control traf-
fic at the expense of increased latency in finding the
route to the destination. The proactive protocols on
the other hand employ periodic messages to maintain
topology information. Some messages are exchanged
locally for neighbor discovery yet others are sent to
the entire MANET to propagate the knowledge of to-
pology among all the nodes. The latency in finding a
route is thus minimized at the expense of heavier con-
trol traffic.

 OLSR is a proactive protocol. Its main functional-
ity is to construct a routing table for each node in the
MANET. The OLSR protocol is a variation of the
pure LSR protocol and is designed specifically for
MANETs. The OLSR protocol achieves optimization
over LSR through the use of MPR (Multi Point Relay)
nodes. The MPR nodes are selected and designated by
neighboring nodes. Unlike LSR, where every node
declares its links, only MPR nodes declare links.
Also, unlike LSR, where each node forwards messages
for their neighbors, only MPR nodes forward mes-
sages for those neighbor nodes that selected them as a
MPR node.
 Each node selects its MPR set of nodes in a way
that, through them, it can reach all of its two hop
neighbors. A node learns about its one-hop and two-
hop neighbors from its one-hop neighbors’ HELLO
messages. By exchanging HELLO messages, a node
finds out which neighbors have chosen it as a MPR.
The neighbors that select a node as MPR form that
node’s MPR Selector set. A TC (Topology Control)
message is sent periodically by each MPR in the net-
work to declare its MPR Selector set and is used in the
construction of routing tables.
 As the existing IETF’s draft on OLSR [5] does not
specify any security mechanism, numerous opportuni-
ties exist for intruding OLSR nodes (unwanted nodes
that are running an OLSR daemon) to launch active or
passive attacks. Passive intruders could eavesdrop on
confidential information that is being exchanged over
the wireless channels. Our PKI allows the encryption
of sensitive data. An active attacker, on the other
hand, can alter control packets or send incorrect con-
trol packets to compromise the integrity of the routing
protocol. For example, an intruding node may broad-
cast its HELLO messages specifying neighbors that
don’t exist. This will allow the intruding node to be-
come an MPR because of the way the MPR set is cho-
sen. Alternatively, an active attacker may simply send
TC messages claiming to be MPR for nodes it is not.
As the network depends on the MPRs for routing ser-
vices, an intruder that manages to become an MPR can
easily launch a black-hole attack. The black-hole at-
tack occurs when a compromised MPR simply drops
some or all of the packets it was supposed to forward.
By using digital signatures, we ensure the integrity and
authenticate the sender of HELLO and TC messages
to prevent such attacks. The authenticated channel for
key distribution is realized using a trusted and fully
distributed CA, as explained in the next section.
 A replay attack can also occur when an attacking
node listens to packets and then broadcasts the same
packets. This attack is possible even when the packets
are encrypted. A variation of the replay problem is the
wormhole problem that involves 2 or more attacking

nodes. A bi-directional wormhole could be used to
make another node appear in 2 places of the MANET.
To address the replay attack will require determining
if a message arrived too late. Replay attack is out of
the scope of our current implementation and has not
been addressed herein. However we are in the process
of enhancing our MANET security infrastructure to
defend against wormhole attacks.
 PKI solutions address many OLSR security con-
cerns and only require an authenticated channel for
key distribution. This channel is realized by using a
fully distributed CA. In the next section the theoreti-
cal foundation of a fully distributed CA is presented to
provide proper background.

III. A FULLY DISTRIBUTED CA

 Our fully distributed CA is based on an approach
described by Luo and Lu in [2]. In this section, we
briefly describe their approach and point out correc-
tions to their original algorithms.
 The CA is an RSA key pair with public key pkCA,
private key skCA, and modulus N. In the fully distrib-
uted approach, skCA is distributed using Shamir’s Se-
cret Sharing method by embedding skCA as the root of
a polynomial f(x) = skCA + a1x +…+ ak-1xk-1. Each
shareholder with a unique non-zero identity i receives
a share Si = f(i) mod N. With knowledge of at least k
shares the polynomial can be evaluated by calculating:

NxlSxf
k

i
ii mod)()(

1
∑

=

⋅=

where li(x) is the Lagrange coefficient defined as:

∏
≠= −

−=
k

ijj
i ji

jxxl
,1

)(

The secret skCA can be recovered by solving for f(0).
 Any coalition of k shareholders may sign a message
by generating a message digest and encrypting it with
their additive shares which produces a partial signa-
ture:

Ndigestsign iP
i mod= where

NlSP iii mod)0(=
A candidate signature can be generated from k partial
signatures as:

nsignSIGN
k

i
i mod'

1
∏

=

= .

By applying the k-bounded coalition offsetting algo-
rithm, a proper signature SIGN (which is verifiable by
pkCA) can be recovered. [2] describes an incorrect
algorithm, we correct it as:

':,0:
mod:

SIGNYj
NdigestZ N

==
= −

while kj < and)mod(NYdigest CApk≠ do

 1:,mod: +=⋅= jjNZYY

YSIGN =

 [2] also suggests an improvement where the sign-
ing coalition can be dynamically chosen by perform-
ing all of the Lagrange calculations on the requesting
node instead of the serving nodes; thereby allowing
the coalition to be determined after receiving any k
replies. However, the authors make an incorrect as-
sumption that the equations

Ndigest NlS ii modmod)0(and Ndigest iilS mod)0(
are equivalent. Through our implementation, we have
found that when using this method there is no guaran-
tee that the candidate certificate will coalesce within
k offsets. Because of the increased computational
complexity, this alternative method is impractical with
large RSA keys. We have notified the authors who
have acknowledged this error.
 It is also possible for k shareholders to serve a re-
questing node that has a unique and verifiable non-
zero identity r, its own share by first generating partial
shares:

NrlSS iiir mod)(, ⋅=
A share is thereafter generated by adding k partial
shares:

∑
=

=
k

i
irr NSS

1
, mod

 When initializing a new node with its own share,
the requesting node must not know the value of each
partial share Sr,i or else it can easily determine the
serving node’s share Si as li(r) is publicly known.
Therefore, an extra round of communication is re-
quired to shuffle the partial shares Sr,i before these are
dispatched to the requesting node. Shuffling is a
method where each serving node mathematically off-
sets its partial share in such a way that each partial
share’s original value is not recoverable but the sum of
all partial shares is still equivalent to a full share.

IV. THE PROPOSED APPROACH

Figure 1. Certificate acquisition process in OLSR

 We assume that the network is initialized with at
least k shareholders. A shareholder can be any trusted
OLSR node including MPRs. An incoming node
needs to discover at least k shareholders from whom to
request a certificate. As illustrated in Fig. 1, we have
implemented two provisions for this using current
OLSR control packets without increasing their length.
The first is through HELLO messages. By setting a
reserved bit in their HELLO messages nodes can indi-
cate if they have partial shares and are willing to pro-
vide service. These modified HELLO messages only
identify shareholders that are one hop away. Since
there may not be at least k shareholders within the one
hop distance of a node, we also use TC messages to
notify the identity of shareholders. Each MPR uses its
TC message to announce which nodes in its MPR se-
lector set claim to be shareholders. These TC mes-
sages are propagated to the entire network and provide
an effective way to inform every node of all the cur-
rent shareholders. We modified the TC messages by
using the reserved section to specify a count C of
nodes in the MPR selector set, which claim to be
shareholders; we further sort the list of Advertised
Neighbor Addresses so that the first C are sharehold-
ers. When a node receives TC messages, it uses these

TC messages to build its routing table and at the same
time builds a table of shareholder nodes (maintaining
their IP address, which we assume unique and verifi-
able, as well as their distance in terms of hop count).

Figure 2. CREQ dispatch to shareholders

 The node subsequently requests a certificate from
any coalition of k shareholders, as shown in Fig. 2.
Our certificate request was designed to conform with
the X.509 CRMF standard [15] and is shown below.

Certificate Request
Certificate Request ID

Validity
Public Key Info

Proof of Posession (optional)

 A node chooses a serving coalition of the k least
costly (in terms of hop count) shareholders it is aware
of, and sends a CREQ (Certificate Request) message
to these serving nodes. If the node itself is a share-
holder, it may choose itself as one of the members of
the coalition. In the best case, a node will choose
amongst its one-hop neighbors. In this case, the node
may send out a single CREQ as a broadcast.
 Upon receiving a CREQ message, each serving
node determines whether it wants to serve this request.
It must check that the requesting node is well behaving
(not on any blacklists), and that it agrees with the
specified validity date. Each serving node, which
chooses to serve the request, will then generate an
X.509 compliant certificate [14] based on the request.
All shareholders generate exactly the same certificate;
calculate the same digest; apply the same padding al-

gorithm [16]; and apply their shares to produce partial
signatures.

X.509 Digital Certificate
Serial Number
Issuer Name

Validity Period
Subject Name

Public Key Information
Extensions

Partial Signature

 The serving nodes return this certificate in a
CREPLY message. The requesting node verifies the
validity of the partial signature on the returned certifi-
cate using verifiable secret sharing techniques as de-
scribed in [2]. If a serving node has returned an inva-
lid partial signature, it is blacklisted and the process is
repeated with a new coalition. If any serving node
fails to reply, then the process must be repeated with a
new coalition. Upon receiving k valid replies from a
coalition, the requesting node extracts the partial sig-
natures, adds them together and applies the coalition-
offsetting algorithm to generate a proper signature, as
described in the previous section. This proper signa-
ture replaces the partial signature in one of the re-
turned certificates and the node now has a valid cer-
tificate signed by skCA and verifiable by pkCA.

Figure 3. Partial share acquisition process

 A node can also request its own partial share. As
illustrated in Fig. 3, the requesting node initiates this
process by sending a SHUFLREQ message to a coali-
tion.

 SHUFLREQ ::= {
 Serving IDs (v1, v2, …,vk)
 Digital Signature
 }

 Upon receiving a SHUFLREQ, each node in the
coalition determines whether the requesting node
should be issued a partial share. If the node agrees to
authorize the requesting node, it will generate
SHUFLFACTORS as necessary.

 SHUFLFACTOR ::= {
 Recipient node ID,
 Shuffle factor (encrypted),
 }

 Each shuffling factor is a random integer value
encrypted by the recipient node’s public key. There is
one shuffling factor required per node pairing in the
serving coalition; the node with the smaller ID in each
pairing generates the shuffling factor. Each node also
keeps record of the shuffling factors it has generated
until after it has finished generating the shuffled par-
tial share. Each agreeing node replies with a
SHUFLREPLY message.

 SHUFLREPLY ::= {
 Serving node’s ID,
 SHUFLFACTORs [0 –k],
 Digital signature
 }

 A SHUFLREPLY is sent, regardless of whether we
generated any SHUFLFACTORs, to enable the re-
questing node to confirm that the entire serving coali-
tion is still available. Once the requesting node has
received all k of these SHUFLREPLY messages, it
concatenates them without making any modifications
to their contents and then sends each serving node this
concatenated list as a SHAREREQ message.

 SHAREREQ ::= {
 SHUFLREPLYs [k],
 Digital Signature
 }

 When a serving node in the coalition receives a
SHAREREQ message it searches for shuffling factors
that are addressed for it. This serving node will now
generate a partial share Sr,i for the requesting node and
then shuffle it. The method we used is that the node
which generated the shuffling factor will add it to its
generated partial share and the node which is agreeing
to the shuffling factor will subtract. Every serving
node replies with a shuffled partial share. These re-
plies must be encrypted otherwise an eavesdropping
node can determine the share. The requesting node
can produce its own share nS by adding these k par-

tial shares. As each partial share was shuffled by add-
ing and subtracting shuffling factors, the requesting
node can not determine the value of the individual
partial shares and, thus, can not determine any serving
node’s partial share. Similar to the certificate replies,
a node verifies each share and black lists nodes that
return improper shares. If any node fails to reply, the
process must be started with a new coalition.

V. CONCLUSIONS

 An efficient approach to integrate a fully distrib-
uted certification authority in OLSR is proposed. The
proposed approach enables an OLSR MANET to
autonomously self-secure itself without any external
administration. The proposed approach minimizes the
signaling overhead by supporting security at the net-
work layer level. Existing OLSR control packets are
utilized to help exchange security information thus
avoiding additional traffic to support the aforemen-
tioned service. A real test-bed has been implemented
to verify the viability of the proposed approach.
 Future extensions of this work will include bench-
marking the performance of the proposed approach
using a heavily loaded and larger MANET; securing
the MANET against wormhole attacks; and generaliz-
ing the proposed approach to accommodate additional
MANET routing protocols.

REFERENCES

[1] A. Shamir, “How to Share a Secret”, Communications of

ACM 1979.
[2] H. Luo and S. Lu, “Ubiquitous and Robust Authentication

Services for Ad Hoc Wireless Networks”, Technical Report
200030, UCLA Computer Science Department 2000.

[3] J. Kong, P. Zerfos, H. Luo, S. Lu and L. Zhang, “Providing
Robust and Ubiquitous Security Support for Mobile Ad-Hoc
Networks, IEEE ICNP 2001.

[4] H. Luo, P. Zerfos, J. Kong, S. Lu and L. Zhang, “Self-securing
Ad Hoc Wireless Networks”, IEEE ISCC 2002.

[5] T. Clausen et. al. , "Optimized Link State Routing Protocol",
http://www.ietf.org/internet-drafts/draft-ietf-manet-olsr-11.txt,
July 2003.

[6] Y.-C. Hu, A. Perrig and D. Johnson, “Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks”, Mobi-
Com’02, September 2002.

[7] S. Marti, T. Giuli, K. Lai and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks”, Proceedings of the
6th Annual International Conference on Mobile Computing
and Networking, Aug. 2000.

[8] S. Yi and R. Kravets, “Key Management for Heterogeneous
Ad Hoc Wireless Networks”, IEEE ICNP’02, pp 12-15, Nov.
2002.

[9] C. Perkins, E. Royer and S. Das, “Ad Hoc On Demand Dis-
tance Vector (AODV) Routing”, http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-13.txt, February 2003.

[10] D. Johnson, D. Maltz and Y. Hu, “Dynamic Source Routing
Protocol for Mobile Ad Hoc Networks (DSR)”,

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt,
April 2003.

[11] R. Ogier, F. Templin and M. Lewis, “Topology Dissemination
Based on Reverse-Path Forwarding (TBRPF)”,
http://www.ietf.org/internet-drafts/draft-ietf-manet-tbrpf-
10.txt, July 2003.

[12] L. Christensen and G. Hansen, “OLSR Routing Protocol”,
http://hipercom.inria.fr/olsr/, September 2003.

[13] M. Zapata, “Secure Ad Hoc On Demand Distance Vector
Routing”, ACM SIGMOBILE Mobile Computing and Com-
munications Review, Vol. 6, Issue. 3, June 2002.

[14] R. Housley, W. Ford, W. Polk and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and CRL Profile”,
http://www.faqs.org/rfcs/rfc2459.html, January 1999.

[15] M. Myers, C. Adams, D. Solo and D. Kemp, “Internet X.509
Certificate Request Message Format”,
http://www.faqs.org/rfcs/rfc2511.html, March 1999.

[16] B. Kaliski, “PKCS #1: RSA Encryption Version 1.5”,
http://www.faqs.org/rfcs/rfc2313.html, March 1998.

