
SDSU MASTERS of HOMELAND SECURITY

GEOL600 SENSOR NETWORKS

NETWORK THEORY



Graph theory
Seven bridges of Konigsberg
Four color theorem
Snarks
Drawing graphs
Graph data structures
Subgraph isomorphism problem 
Single source shortest path
Steiner Tree problem
Network theory
Complex networks
Scale free networks
Small world networks 

Wireless Mesh Networks
AdHoc Routing Protocols
MANETs
Pony Express
Baseline article



GRAPH THEORY

A graph is a set of objects called vertices (or Nodes)
connected by links called edges (or Arcs) which can be
directed. If the graph is directed the direction is indicated by
drawing an arrow.

Many structures can be represented as graphs and many
problems of practical interest can be represented by graphs. 
The link structure of a website can be represented by a directed graph: the
vertices are the webpages and there is a directed edge from page A to page B 
if and only if A contains a link to B.

Development of algorithms to handle graphs is of major interest in computer
science.

A graph structure can be extended by assigning a weight to each edge, or by
making the edges to the graph directional (A links to B, but B does not
necessarily link to A, as in webpages), technically called a digraph.
A digraph with weighted edges is called a network.

Networks have many uses in the practical side of graph theory, network analysis
(for example, to model and analyse traffic networks or to discover the shape of
the internet ). However, it should be noted that within network analysis, the
definition of the term "network" may differ, and may often refer to a simple
graph



HISTORY  Seven Bridges of Königsberg (1736)

Königsberg, (Prussia) on the river Pregel included
two large islands which were connected to each
other and the mainland by seven bridges. 

Is it possible to walk with a route that crosses each
bridge exactly once, and return to the starting
point ?

In 1736, Euler proved it is not possible, by formulating the
problem in terms of graph theory: replacing each landmass
by a node and each bridge with an edge.

Euler showed that a circuit of the desired form is possible if
and only if there are no nodes that have an odd number of
edges touching them. Such a walk is called an Eulerian
circuit or an Euler tour. Since the graph corresponding to
Königsberg has four such nodes, the path is impossible.

If the starting point does not need to coincide with the end point there can be
either zero or two nodes that have an odd number of edges touching them. Such
a walk is called an Eulerian trail or Euler walk. 

This too is impossible for the seven bridges of Königsberg.



HISTORY: Four color problem (1852 ; 1976)

Four color theorem, first proposed by Guthrie in 1852,
states that every possible geographical map can be colored
using no more than four colors in such a way that no two
adjacent regions are the same color. 

To formally state the theorem, it is easiest to rephrase it in graph theory. 
It then states that the vertices of every planar graph can be colored with at most
four colors so that no two adjacent vertices receive the same color. Or "every
planar graph is four-colorable" for short.
Here, every region of the map is replaced by a vertex of the graph, and two
vertices are connected by an edge if and only if the two regions share a border
segment.

Theorem was proved by Kenneth Appel and Wolfgang Haken in 1976.
The proof of the Four Color Theorem is not simple; it involved lengthy computer
checking of more than 100,000 particular cases. Some mathematicians consider
this unacceptable, as the proof cannot be reviewed;

The proof does not provide any insight as to why the conjecture is true. 
The theorem is true, but unexplained. 

Appel K & Haken W,  (Oct 1977) Solution of the Four Color Map Problem, 
Scientific American, 237 (4): .108-121.



SNARKS
In graph theory, a snark is a connected, bridgeless cubic graph with chromatic
index equal to four.

In other words, it is a graph in which every node has three branches, and the
edges cannot be colored in fewer than four colors without two edges of the same
color meeting at a point.

The four color theorem is equivalent to the statement that no snark is planar.

Petersen graph: (smallest snark, 1898)              Blanusa snarks (1946)

A planar graph can be embedded in a plane so that no edges intersect.
K5 K3,3

    Complete graph                        Complete bipartite graph

Planar   Non Planar



DRAWING GRAPHS
Graphs are represented graphically by drawing a dot for every vertex, and
drawing an arc between two vertices if they are connected by an edge. If the
graph is directed the direction is indicated by drawing an arrow.

A graph drawing should not be confused with the graph itself (the abstract, non-
graphical structure) as there are several ways to structure the graph drawing. All
that matters is which vertices are connected to which others by how many edges
and not the exact layout.
In practise it is often difficult to decide if two drawings represent the same graph.
Depending on the problem domain some layouts may be better suited and easier
to understand than others.

Kruja E et al (2001), Short note on history of graph drawing, 
Proc.Graph Drawing 2265: 272-286  www.merl.com/papers/TR2001-49/

GraphViz: open source graph visualization software
The Graphviz layout programs take descriptions of graphs
in a simple text language, and make diagrams in several
useful formats. (supports GXL) 

In practice, graphs are usually generated from external
data sources, but they can also be created and edited
manually, either as raw text files or within a graphical
editor. (Graphviz is not a Visio replacement) 

www.graphviz.org/



GRAPH DATA STRUCTURES
The data structure used to store graphs depends on the graph structure and the
algorithm used for manipulating them.
Theoretically distinguishable list and matrix structures but in reality the best
structure is often a combination of both. Lists are preferred for sparse graphs
whilst. Matrices provide faster access but consume memory if graph is large.

LIST STRUCTURES

Incidence list - The edges are represented by an array containing pairs
(ordered if directed) of vertices (that the edge connects) and eventually weight
and other data. 

Adjacency list - Each node has a list of which nodes it is adjacent to. This can
sometimes result in "overkill" in an undirected graph as vertex 3 may be in the
list for node 2, then node 2 must be in the list for node 3. This representation is
easier to find all the nodes which are connected to a single node, since these are
explicitly listed. 

MATRIX STRUCTURES

Incidence matrix - The graph is represented by a matrix of E (edges) by V
(vertices), where [edge, vertex] contains the edge's data (simplest case: 1 -
connected, 0 - not connected). 

Adjacency matrix - there is an N by N matrix, where N is the number of
vertices in the graph. If there is an edge from vertex x to vertex y, then the
element Mx,y is 1, otherwise it is 0. Easier to find subgraphs, and to reverse
graphs if needed. 

Admittance matrix - is defined as degree matrix minus adjacency matrix and
thus contains adjacency information and degree information about the vertices 



SUBGRAPH ISOMORPHISM PROBLEM 
A common problem is finding subgraphs in a given graph. 
As many graph properties are hereditary, if a subgraph has a property then so
does the whole graph, for instance, if a graph contains K3,3 (the complete
bipartite graph) then it is non-planar.

Kuratowski's theorem: 
A finite graph is planar if and only if 
it does not contain a subgraph that is an expansion of K5 or K3,3.
it does not contain a subgraph that is homemorphic to K5 or K3,3

it does not have K5 or K3,3 as a minor

K3,3 illustrates the 'three cottage problem',:
There are 3 cottages on a plane (or sphere), each
needs to be connected to the gas, electricity and
water. Is there any way to do so without any of
the lines crossing ?

Finding maximal subgraphs of a certain kind is
often a NP-complete problem.
(Computational complexity theory NP complexity class problems can be solved by
a Non-deterministic machine in polynomial time; the computation time of a
problem where the time m(n) is no greater than the a polynomial function of the
problem size n.)



SINGLE SOURCE SHORTEST PATH PROBLEM
the single-source shortest path problem is the problem of finding a path between
two vertices such that the sum of the weights of its constituent edges is
minimized. 
A solution to the shortest path problem is sometimes called a pathing algorithm. 

The most important algorithms for solving this problem are:

Dijkstra's algorithm — solves single source problem if all edge weights are
greater than or equal to zero. Without worsening the run time, this algorithm can
in fact compute the shortest paths from a given start point s to all other nodes. 

Bellman-Ford algorithm — solves single source problem if edge weights may
be negative. 

A* pathing algorithm — a heuristic for single source shortest paths. 

Floyd-Warshall algorithm — solves all pairs shortest paths. 

Johnson's algorithm — solves all pairs shortest paths, may be faster than
Floyd-Warshall on sparse graphs. 

A related problem is the traveling salesman problem, which is the problem of
finding the shortest path that goes through every node exactly once, and returns
to the start. That problem is NP-hard, so an efficient solution is not likely to exist.

In  computer networking / telecommunications, this shortest path problem is
sometimes called the min-delay path problem and usually tied with a widest path
problem. 



STEINER TREE PROBLEM
The Steiner tree problem is a combinatorial optimization problem 
In its most general setting it is stated in a way similar to that of the minimum
spanning tree problem: given a set V of points (vertices), it is required to
interconnect them by a network (graph) of shortest length provided that it is
allowed to add new vertices to the network.
The latter possibility is the difference from the minimum spanning tree problem.

These new vertices introduced to decrease the total length of connection are
known as Steiner points or Steiner vertices.
It is proven that the resulting connection is a tree, known as the Steiner tree.
There may be several Steiner trees for a given set of vertices.

The Steiner tree problem has applications in
circuit layout or network design. Most
versions of the Steiner tree problem are NP-
complete, i.e., computationally hard. Some
restricted cases can be solved in polynomial
time. In practice, heuristics are used.

One common approximation to the Euclidean Steiner tree problem is to compute
the Euclidean minimum spanning tree.



NETWORK THEORY
Network theory is another branch of applied mathematics  with the same general
subject matter as graph theory, namely a graph is a representation of a
symmetric relation, and  a directed graph for a general binary relation. 
The approach is application centered, in particular to computer networks but not
limited to those. Network theory is also used to describe the use of social
network maps within the social sciences. 

COMPLEX NETWORKS
Complex networks are the backbone of  complex systems. 
They are special networks at the edge of chaos where the degree of connectivity
is neither regular nor random.

The most complex networks of the real world are either small-world networks
or scale-free networks at the border between regular and random networks. 
They can be described by means of mathematics and Graph Theory.

Both classes of complex networks, small-world and scale-free networks are very
similar. Small-world networks or graphs emerge through the random rewiring of
regular grids or lattices: adding randomness to order. 
Scale-free networks arise in networks if you add order to randomnes: instead of
considering a pure random growth of a network, you consider a random growth
with preferential attachment.

The small-world property can be associated with global connectivity and the
shortest path length, it arises in regular networks through the addition of random
shortcuts. The scale-free property can be associated with local connectivity, it
arises in random networks through clustering.



SCALE FREE (ARISTOCRATIC) NETWORKS
In a scale-free network the distribution of connectivity is extremely uneven.
Some nodes act as "very connected" hubs using a power-law distribution  y = axk

This kind of connectedness dramatically influences the way the network operates,
including how it responds to catastrophic events. 
The Internet, World Wide Web and many other large-scale networks have been
shown to be scale-free networks.

The term "scale-free" was coined by Barabasi et al in 1998, they mapped the
connectedness of the World Wide Web and found that the web does not have an
even distribution of connectivity (so-called "random connectivity"). 



Instead, a very few network nodes (called "hubs") are far more connected than
other nodes. In general, they found that the probability P(k) that a node in the
network connects with k other nodes was, in a given network, proportional to k-y.

There is a simple explanation for this behavior. 
Many networks expand through the addition of nodes to an existing network, and
those nodes attach preferentially to nodes already well-connected. 

It has been found that many networks (including those describing
interrelationships of objects) are scale-free. They have been identified in the
dispersal of STDs, air travel connections, and many kinds of computer networks.

Many have studied collaboration networks, in which nodes represent people, and
the links between nodes represent some kind of collaboration between them.
Many of these have also been found to be scale-free networks. 

Computer networks that are also scale-free networks are significantly different
from random connectivity networks in the presence of failure. If nodes fail
randomly, scale-free networks behave even better than random connectivity
networks, because random failures are unlikely to harm an important hub.
However, if the failure of nodes is not random, scale-free networks can fail
catastrophically. For example, an intelligent attacker can essentially destroy an
entire scale-free network by intelligently identifying and attacking its key hubs.

Thus, the realization that certain networks are scale-free is important to security.



SMALL WORLD NETWORKS

A small-world network is a specific kind of network (to be more precise a special
kind of a complex network) in which the distribution of connectivity is not
confined to a certain scale, and where every node can be reached from every
other by a small number of hops or steps. It is a generalisation of the small-
world phenomenon

The small world hypothesis, tested experimentally , is the idea that two arbitrary
people are connected by only six degrees of separation, i.e. the diameter of the
corresponding graph of social connections is not much larger than six.
http://smallworld.columbia.edu/results.html

 



The small-world phenomenon applies to social networks. Duncan J. Watts and
Steven Strogatz (1998) have identified it as a general feature of certain networks
and propose that a similar phenomenon can occur in any network.

They propose that we can measure whether a network is a small world or not
according to two graph measurements of the network: clustering coefficient and
mean-shortest path length.

If the clustering coefficient is significantly higher than would be expected for a
random network, and the mean shortest-path length is lower than would be
expected for a regular network, then the network is a small world. 

It can be seen how this works for the small-world phenomenon: most people
have a relatively small circle of friends who generally all know each other (highly
clustered), but the shortest-path length from one person to any other is possibly
very short.

Examples:
University of Virginia : Oracle of Bacon, Star Links

www.cs.virginia.edu/oracle/

www.cs.virginia.edu/oracle/star_links.html

www.canyouhearmeyet.com/



WIRELESS MESH NETWORKS
Mesh networking is a way to route data between nodes. It allows for continuous
connections and reconfiguration around blocked paths by "hopping" from node to
node until a connection can be established.

Mesh networks are self-healing: the network can still operate even when a node
breaks down or a connection goes bad. 

As a result, a very reliable network is formed.

Networking infrastructure is decentralised and inexpensive, as each node need
only transmit as far as the next node. Nodes act as repeaters to transmit data
from nearby nodes to peers that are too far away to reach, resulting in a network
that can span a large distance, especially over rough or difficult terrain. 

Mesh networks are also extremely reliable, as each node is connected to several
other nodes. If one node drops out of the network, due to hardware failure or
any other reason, its neighbours simply find another route. Extra capacity can be
installed by simply adding more nodes. Mesh networks may involve either fixed
or mobile devices.

The principle is similar to the way packets travel around the Internet - data will
hop from one device to another until it reaches a given destination. Dynamic
routing capabilities included in each device allow this to happen. To implement
such dynamic routing capabilities, each device needs to communicate its routing
information to every device it connects with, "almost in real time". Each device
then determines what to do with the data it receives - either pass it on to the
next device or keep it. The routing algorithm used should attempt to always
ensure that the data takes the most appropriate (fastest) route to its destination.



The choice of radio technology for wireless mesh networks is crucial. 
In Infrastructure mode the more laptops connect the less bandwidth is available
for each user. 
With mesh technology and adaptive radio, devices in a mesh network will only
connect with other devices that are in a set range. Like a natural load balancing
system the more devices the more bandwidth available, provided that the
number of hops in the average communications path is kept low.

To prevent increased hop count from cancelling out the advantages of multiple
transceivers, one common type of architecture for a mobile mesh network
includes multiple fixed base stations with high-bandwidth terrestrial links that will
provide gateways to services, the Internet and other fixed base stations. The
"cut through" bandwidth of the base station infrastructure must be substantial
for the network to operate effectively. 

ADHOC ROUTING PROTOCOLS
There are a large number of competing schemes for routing packets across mesh
networks. They can be classified as proactive (table driven), reactive (on
demand), hierarchical, geographical, power aware, multicast or geocast.
Some of these are

TORA (Temporally-Ordered Routing Algorithm) 
OORP (OrderOne Routing Protocol) 
AODV (Ad-hoc On Demand Distance Vector) 
OLSR (Optimized Link State Routing protocol) 
HSLS (Hazy-Sighted Link State) 

Refer to en.wikipedia.org/wiki/Ad_hoc_protocol_list  for comprehensive listing



MANET (Mobile Ad-Hoc Network)
A MANET is a self-configuring network of mobile routers (and associated hosts)
connected by wireless links—the union of which form an arbitrary topology. The
routers are free to move randomly and organise themselves arbitrarily; thus, the
network's wireless topology may change rapidly and unpredictably. Such a
network may operate in a standalone fashion, or may be connected to the larger
Internet.

The earliest MANETs were called "packet radio" networks, and were sponsored by
DARPA in the early 1970s. These early packet radio systems predated the
Internet, and indeed were part of the motivation of the original Internet Protocol
suite. Later DARPA experiments included the Survivable Radio Network (SURAN)
project, which took place in the 1980s. Another third wave of academic activity
started in the mid 1990s with the advent of inexpensive 802.11 radio cards for
personal computers. Current MANETs are designed primarly for military utility;
examples include JTRS and NTDR.

The popular IEEE 802.11 ("Wi-Fi") wireless protocol incorporates an ad-hoc
networking system when no wireless access points are present, although it would
be considered a very low-grade ad-hoc protocol by specialists in the field. The
IEEE 802.11 system only handles traffic within a local "cloud" of wireless devices.
Each node transmits and receives data, but does not route anything between the
network's systems. 
However, higher-level protocols can be used to aggregate various IEEE 802.11
ad-hoc networks into MANETs.
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Baseline article:
Carr D (2005)
“Unfilled Promise”

projects.mindtel.com/2005/05.baseline.strongangel


